1887

Abstract

SCO6256 belongs to the GntR family and shows 74 % identity with SCO6974, which is the repressor of -inositol catabolism in A3(2). Disruption of significantly enhanced the transcription of -inositol catabolic genes in R2YE medium. The purified recombinant SCO6256 directly bound to the upstream regions of , and , as well as its encoding gene. Footprinting assays demonstrated that SCO6256 bound to the same sites in the -inositol catabolic gene cluster as SCO6974. The expression of was repressed by SCO6974 in minimal medium with -inositol as the carbon source, but not in R2YE medium. Glutathione--transferase pull-down assays demonstrated that SCO6974 and SCO6256 interacted with each other; and both of the proteins controlled the transcription of -inositol catabolic genes in R2YE medium. These results indicated SCO6256 regulates the transcription of -inositol catabolic genes in coordination with SCO6974 in R2YE medium. In addition, SCO6256 negatively regulated the production of actinorhodin and calcium-dependent antibiotic via control of the transcription of II-ORF4 and . SCO6256 bound to the upstream region of and the binding sequence was proved to be TTTCGGCACGCAGACAT, which was further confirmed through base substitution. Four putative targets (, , and ) of SCO6256 were found by screening the genome sequence of A3(2) based on the conserved binding motif, and confirmed by transcriptional analysis and electrophoretic mobility shift assays. These results revealed that SCO6256 is involved in the regulation of -inositol catabolic gene transcription and antibiotic production in A3(2).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000235
2016-03-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/3/537.html?itemId=/content/journal/micro/10.1099/mic.0.000235&mimeType=html&fmt=ahah

References

  1. Allenby N. E. , Laing E. , Bucca G. , Kierzek A. M. , Smith C. P. . ( 2012;). Diverse control of metabolism and other cellular processes in Streptomyces coelicolor by the PhoP transcription factor: genome-wide identification of in vivo targets. Nucleic Acids Res 40: 9543–9556 [CrossRef] [PubMed].
    [Google Scholar]
  2. Anderson A. S. , Wellington E. M. . ( 2001;). The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51: 797–814 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bai L. , Qi X. , Zhang Y. , Yao C. , Guo L. , Jiang R. , Zhang R. , Li Y. . ( 2013;). A new GntR family regulator Ste1 in Streptomyces sp. 139. Appl Microbiol Biotechnol 97: 8673–8682 [CrossRef] [PubMed].
    [Google Scholar]
  4. Boutte C. C. , Srinivasan B. S. , Flannick J. A. , Novak A. F. , Martens A. T. , Batzoglou S. , Viollier P. H. , Crosson S. . ( 2008;). Genetic and computational identification of a conserved bacterial metabolic module. PLoS Genet 4: e1000310 [CrossRef] [PubMed].
    [Google Scholar]
  5. Casali N. , White A. M. , Riley L. W. . ( 2006;). Regulation of the Mycobacterium tuberculosis mce1 operon. J Bacteriol 188: 441–449 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chater K. F. . ( 1998;). Taking a genetic scalpel to the Streptomyces colony. Microbiology 144: 1465–1478 [CrossRef].
    [Google Scholar]
  7. Fernández-Moreno M. A. , Caballero J. L. , Hopwood D. A. , Malpartida F. . ( 1991;). The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces . Cell 66: 769–780 [CrossRef] [PubMed].
    [Google Scholar]
  8. Gilbert M. , Morosoli R. , Shareck F. , Kluepfel D. . ( 1995;). Production and secretion of proteins by streptomycetes. Crit Rev Biotechnol 15: 13–39 [CrossRef] [PubMed].
    [Google Scholar]
  9. Gomez-Escribano J. P. , Song L. , Fox D. J. , Yeo V. , Bibb M. J. , Challis G. L. . ( 2012;). Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem Sci 3: 2716–2720 [CrossRef].
    [Google Scholar]
  10. Haine V. , Sinon A. , Van Steen F. , Rousseau S. , Dozot M. , Lestrate P. , Lambert C. , Letesson J. J. , De Bolle X. . ( 2005;). Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence. Infect Immun 73: 5578–5586 [CrossRef] [PubMed].
    [Google Scholar]
  11. Heo G. Y. , Kim W. C. , Joo G. J. , Kwak Y. Y. , Shin J. H. , Roh D. H. , Park H. D. , Rhee I. K. . ( 2008;). Deletion of xylR gene enhances expression of xylose isomerase in Streptomyces lividans TK24. J Microbiol Biotechnol 18: 837–844 [PubMed].
    [Google Scholar]
  12. Hillerich B. , Westpheling J. . ( 2006;). A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J Bacteriol 188: 7477–7487 [CrossRef] [PubMed].
    [Google Scholar]
  13. Hojati Z. , Milne C. , Harvey B. , Gordon L. , Borg M. , Flett F. , Wilkinson B. , Sidebottom P. J. , Rudd B. A. M. , other authors . ( 2002;). Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor . Chem Biol 9: 1175–1187 [CrossRef] [PubMed].
    [Google Scholar]
  14. Hoskisson P. A. , Rigali S. . ( 2009;). Variation in form and function: the helix-turn-helix regulators of the GntR superfamily. Adv Appl Microbiol 69: 1–22 [CrossRef] [PubMed].
    [Google Scholar]
  15. Hoskisson P. A. , Rigali S. , Fowler K. , Findlay K. C. , Buttner M. J. . ( 2006;). DevA, a GntR-like transcriptional regulator required for development in Streptomyces coelicolor . J Bacteriol 188: 5014–5023 [CrossRef] [PubMed].
    [Google Scholar]
  16. Iqbal M. , Mast Y. , Amin R. , Hodgson D. A. , the STREAM Consortium , Wohlleben W. , Burroughs N. J. . ( 2012;). Extracting regulator activity profiles by integration of de novo motifs and expression data: characterizing key regulators of nutrient depletion responses in Streptomyces coelicolor . Nucleic Acids Res 40: 5227–5239 [CrossRef] [PubMed].
    [Google Scholar]
  17. Jaques S. , McCarter L. L. . ( 2006;). Three new regulators of swarming in Vibrio parahaemolyticus . J Bacteriol 188: 2625–2635 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kataoka M. , Tanaka T. , Kohno T. , Kajiyama Y. . ( 2008;). The carboxyl-terminal domain of TraR, a Streptomyces HutC family repressor, functions in oligomerization. J Bacteriol 190: 7164–7169 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kieser T. , Bibb M. J. , Buttner M. J. , Chater K. F. , Hopwood D. A. . ( 2000;). Practical Streptomyces Genetics: a Laboratory Manual Norwich: John Innes Foundation;.
    [Google Scholar]
  20. Li W. , Ying X. , Guo Y. , Yu Z. , Zhou X. , Deng Z. , Kieser H. , Chater K. F. , Tao M. . ( 2006;). Identification of a gene negatively affecting antibiotic production and morphological differentiation in Streptomyces coelicolor A3(2). J Bacteriol 188: 8368–8375 [CrossRef] [PubMed].
    [Google Scholar]
  21. Liu G. , Tian Y. , Yang H. , Tan H. . ( 2005;). A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol Microbiol 55: 1855–1866 [CrossRef] [PubMed].
    [Google Scholar]
  22. Liu G. , Chater K. F. , Chandra G. , Niu G. , Tan H. . ( 2013;). Molecular regulation of antibiotic biosynthesis in Streptomyces . Microbiol Mol Biol Rev 77: 112–143 [CrossRef] [PubMed].
    [Google Scholar]
  23. Livak K. J. , Schmittgen T. D. . ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔC T method. Methods 25: 402–408 [CrossRef] [PubMed].
    [Google Scholar]
  24. Malpartida F. , Hopwood D. A. . ( 1986;). Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol Gen Genet 205: 66–73 [CrossRef] [PubMed].
    [Google Scholar]
  25. Malpartida F. , Niemi J. , Navarrete R. , Hopwood D. A. . ( 1990;). Cloning and expression in a heterologous host of the complete set of genes for biosynthesis of the Streptomyces coelicolor antibiotic undecylprodigiosin. Gene 93: 91–99 [CrossRef] [PubMed].
    [Google Scholar]
  26. Miroux B. , Walker J. E. . ( 1996;). Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260: 289–298 [CrossRef] [PubMed].
    [Google Scholar]
  27. Nett M. , Ikeda H. , Moore B. S. . ( 2009;). Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26: 1362–1384 [CrossRef] [PubMed].
    [Google Scholar]
  28. Nothaft H. , Rigali S. , Boomsma B. , Swiatek M. , McDowall K. J. , van Wezel G. P. , Titgemeyer F. . ( 2010;). The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. Mol Microbiol 75: 1133–1144 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ohnishi Y. , Yamazaki H. , Kato J. Y. , Tomono A. , Horinouchi S. . ( 2005;). AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus . Biosci Biotechnol Biochem 69: 431–439 [CrossRef] [PubMed].
    [Google Scholar]
  30. Pan Y. , Liu G. , Yang H. , Tian Y. , Tan H. . ( 2009;). The pleiotropic regulator AdpA-L directly controls the pathway-specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes . Mol Microbiol 72: 710–723 [CrossRef] [PubMed].
    [Google Scholar]
  31. Pan Y. , Lu C. , Dong H. , Yu L. , Liu G. , Tan H. . ( 2013;). Disruption of rimP-SC, encoding a ribosome assembly cofactor, markedly enhances the production of several antibiotics in Streptomyces coelicolor . Microb Cell Fact 12: 65 [CrossRef] [PubMed].
    [Google Scholar]
  32. Reuther J. , Wohlleben W. , Muth G. . ( 2006;). Modular architecture of the conjugative plasmid pSVH1 from Streptomyces venezuelae . Plasmid 55: 201–209 [CrossRef] [PubMed].
    [Google Scholar]
  33. Rigali S. , Derouaux A. , Giannotta F. , Dusart J. . ( 2002;). Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 277: 12507–12515 [CrossRef] [PubMed].
    [Google Scholar]
  34. Rigali S. , Titgemeyer F. , Barends S. , Mulder S. , Thomae A. W. , Hopwood D. A. , van Wezel G. P. . ( 2008;). Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces . EMBO Rep 9: 670–675 [CrossRef] [PubMed].
    [Google Scholar]
  35. Ryu Y. G. , Butler M. J. , Chater K. F. , Lee K. J. . ( 2006;). Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor . Appl Environ Microbiol 72: 7132–7139 [CrossRef] [PubMed].
    [Google Scholar]
  36. Sambrook J. , Russell D. W. . ( 2001;). Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  37. Sheeler N. L. , MacMillan S. V. , Nodwell J. R. . ( 2005;). Biochemical activities of the absA two-component system of Streptomyces coelicolor . J Bacteriol 187: 687–696 [CrossRef] [PubMed].
    [Google Scholar]
  38. Sprusansky O. , Zhou L. , Jordan S. , White J. , Westpheling J. . ( 2003;). Identification of three new genes involved in morphogenesis and antibiotic production in Streptomyces coelicolor . J Bacteriol 185: 6147–6157 [CrossRef] [PubMed].
    [Google Scholar]
  39. Truong-Bolduc Q. C. , Hooper D. C. . ( 2007;). The transcriptional regulators NorG and MgrA modulate resistance to both quinolones and β-lactams in Staphylococcus aureus . J Bacteriol 189: 2996–3005 [CrossRef] [PubMed].
    [Google Scholar]
  40. Uguru G. C. , Stephens K. E. , Stead J. A. , Towle J. E. , Baumberg S. , McDowall K. J. . ( 2005;). Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor . Mol Microbiol 58: 131–150 [CrossRef] [PubMed].
    [Google Scholar]
  41. van Wezel G. P. , McDowall K. J. . ( 2011;). The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28: 1311–1333 [CrossRef] [PubMed].
    [Google Scholar]
  42. Wang C. , Long X. , Mao X. , Dong H. , Xu L. , Li Y. . ( 2010;). SigN is responsible for differentiation and stress responses based on comparative proteomic analyses of Streptomyces coelicolor wild-type and sigN deletion strains. Microbiol Res 165: 221–231 [CrossRef] [PubMed].
    [Google Scholar]
  43. Wang R. , Mast Y. , Wang J. , Zhang W. , Zhao G. , Wohlleben W. , Lu Y. , Jiang W. . ( 2013;). Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor . Mol Microbiol 87: 30–48 [CrossRef] [PubMed].
    [Google Scholar]
  44. Wietzorrek A. , Bibb M. . ( 1997;). A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25: 1181–1184 [CrossRef] [PubMed].
    [Google Scholar]
  45. Yang H. , Wang L. , Xie Z. , Tian Y. , Liu G. , Tan H. . ( 2007;). The tyrosine degradation gene hppD is transcriptionally activated by HpdA and repressed by HpdR in Streptomyces coelicolor, while hpdA is negatively autoregulated and repressed by HpdR. Mol Microbiol 65: 1064–1077 [CrossRef] [PubMed].
    [Google Scholar]
  46. Yebra M. J. , Zúñiga M. , Beaufils S. , Pérez-Martínez G. , Deutscher J. , Monedero V. . ( 2007;). Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol. Appl Environ Microbiol 73: 3850–3858 [CrossRef] [PubMed].
    [Google Scholar]
  47. Yepes A. , Rico S. , Rodríguez-García A. , Santamaría R. I. , Díaz M. . ( 2011;). Novel two-component systems implied in antibiotic production in Streptomyces coelicolor . PLoS One 6: e19980 [CrossRef] [PubMed].
    [Google Scholar]
  48. Yoshida K. I. , Shibayama T. , Aoyama D. , Fujita Y. . ( 1999;). Interaction of a repressor and its binding sites for regulation of the Bacillus subtilis iol divergon. J Mol Biol 285: 917–929 [CrossRef] [PubMed].
    [Google Scholar]
  49. Yu Z. , Zhu H. , Dang F. , Zhang W. , Qin Z. , Yang S. , Tan H. , Lu Y. , Jiang W. . ( 2012;). Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Streptomyces coelicolor . Mol Microbiol 85: 535–556 [CrossRef] [PubMed].
    [Google Scholar]
  50. Yu L. , Li S. , Gao W. , Pan Y. , Tan H. , Liu G. . ( 2015;). Regulation of myo-inositol catabolism by a GntR-type repressor SCO6974 in Streptomyces coelicolor . Appl Microbiol Biotechnol 99: 3141–3153 [CrossRef] [PubMed].
    [Google Scholar]
  51. Zhang G. , Tian Y. , Hu K. , Zhu Y. , Chater K. F. , Feng C. , Liu G. , Tan H. . ( 2012;). Importance and regulation of inositol biosynthesis during growth and differentiation of Streptomyces . Mol Microbiol 83: 1178–1194 [PubMed].[CrossRef]
    [Google Scholar]
  52. Zianni M. , Tessanne K. , Merighi M. , Laguna R. , Tabita F. R. . ( 2006;). Identification of the DNA bases of a DNase I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument. J Biomol Tech 17: 103–113 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000235
Loading
/content/journal/micro/10.1099/mic.0.000235
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error