Editor's Choice Ribosome dimerization is essential for the efficient regrowth of Free

Abstract

Ribosome dimers are a translationally inactive form of ribosomes found in and many other bacterial cells. In this study, we found that the 70S ribosomes of dimerized during the early stationary phase and these dimers remained in the cytoplasm until regrowth was initiated. Ribosome dimerization during the stationary phase required the gene, which encodes a homologue of the hibernation-promoting factor (Hpf). The expression of was induced at an early stationary phase and its expression was observed throughout the rest of the experimental period, including the entire 6 h of the stationary phase. Ribosome dimerization followed the induction of in WT cells, but the dimerization was impaired in cells harbouring a deletion in the gene. Although the absence of ribosome dimerization in these Hpf-deficient cells did not affect their viability in the stationary phase, their ability to regrow from the stationary phase decreased. Thus, following the transfer of stationary-phase cells to fresh LB medium, Δ mutant cells grew slower than WT cells. This observed lag in growth of Δ cells was probably due to a delay in restoring their translational activity. During regrowth, the abundance of ribosome dimers in WT cells decreased with a concomitant increase in the abundance of 70S ribosomes and growth rate. These results suggest that the ribosome dimers, by providing 70S ribosomes to the cells, play an important role in facilitating rapid and efficient regrowth of cells under nutrient-rich conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000234
2016-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/3/448.html?itemId=/content/journal/micro/10.1099/mic.0.000234&mimeType=html&fmt=ahah

References

  1. Aiso T., Yoshida H., Wada A., Ohki R. 2005; Modulation of mRNA stability participates in stationary-phase-specific expression of ribosome modulation factor. J Bacteriol 187:1951–1958 [View Article][PubMed]
    [Google Scholar]
  2. Akanuma G., Habu C., Natori Y., Murayama R., Nanamiya H., Kawamura F. 2006; Construction and characterization of Bacillus subtilis deletion mutants lacking the prophage 2-trnS region. FEMS Microbiol Lett 258:220–226 [View Article][PubMed]
    [Google Scholar]
  3. Ashikaga S., Nanamiya H., Ohashi Y., Kawamura F. 2000; Natural genetic competence in Bacillus subtilis natto OK2. J Bacteriol 182:2411–2415 [View Article][PubMed]
    [Google Scholar]
  4. Drzewiecki K., Eymann C., Mittenhuber G., Hecker M. 1998; The yvyD gene of Bacillus subtilis is under dual control of sigma B and sigma H. J Bacteriol 180:6674–6680[PubMed]
    [Google Scholar]
  5. González-Pastor J. E., Hobbs E. C., Losick R. 2003; Cannibalism by sporulating bacteria. Science 301:510–513 [View Article][PubMed]
    [Google Scholar]
  6. Kaczanowska M., Rydén-Aulin M. 2007; Ribosome biogenesis and the translation process in Escherichia coli . Microbiol Mol Biol Rev 71:477–494 [View Article][PubMed]
    [Google Scholar]
  7. Kline B. C., McKay S. L., Tang W. W., Portnoy D. A. 2015; The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis. J Bacteriol 197:581–591 [View Article][PubMed]
    [Google Scholar]
  8. Maki Y., Yoshida H., Wada A. 2000; Two proteins, YfiA and YhbH, associated with resting ribosomes in stationary phase Escherichia coli . Genes Cells 5:965–974 [View Article][PubMed]
    [Google Scholar]
  9. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  10. Nanamiya H., Ohashi Y., Asai K., Moriya S., Ogasawara N., Fujita M., Sadaie Y., Kawamura F. 1998; ClpC regulates the fate of a sporulation initiation sigma factor, sigmaH protein, in Bacillus subtilis at elevated temperatures. Mol Microbiol 29:505–513 [CrossRef]
    [Google Scholar]
  11. Nanamiya H., Shiomi E., Ogura M., Tanaka T., Asai K., Kawamura F. 2003; Involvement of ClpX protein in the post-transcriptional regulation of a competence specific transcription factor, ComK protein, of Bacillus subtilis . J Biochem 133:295–302 [View Article][PubMed]
    [Google Scholar]
  12. Nanamiya H., Akanuma G., Natori Y., Murayama R., Kosono S., Kudo T., Kobayashi K., Ogasawara N., Park S. M., other authors. 2004; Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol Microbiol 52:273–283 [View Article][PubMed]
    [Google Scholar]
  13. Nanamiya H., Kasai K., Nozawa A., Yun C. S., Narisawa T., Murakami K., Natori Y., Kawamura F., Tozawa Y. 2008; Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis . Mol Microbiol 67:291–304 [CrossRef]
    [Google Scholar]
  14. Nanamiya H., Sato M., Masuda K., Sato M., Wada T., Suzuki S., Natori Y., Katano M., Akanuma G., Kawamura F. 2010; Bacillus subtilis mutants harbouring a single copy of the rRNA operon exhibit severe defects in growth and sporulation. Microbiology 156:2944–2952 [View Article][PubMed]
    [Google Scholar]
  15. Nandy S. K., Venkatesh K. V. 2008; Effect of carbon and nitrogen on the cannibalistic behavior of Bacillus subtilis . Appl Biochem Biotechnol 151:424–432 [View Article][PubMed]
    [Google Scholar]
  16. Natori Y., Nanamiya H., Akanuma G., Kosono S., Kudo T., Ochi K., Kawamura F. 2007; A fail-safe system for the ribosome under zinc-limiting conditions in Bacillus subtilis . Mol Microbiol 63:294–307 [View Article][PubMed]
    [Google Scholar]
  17. Nierhaus K. H. 2004; Ribosome assembly. In Protein Synthesis and Ribosome Structure pp 85–105 Edited by Nierhaus K. H., Wilson D. N. Weinheim: Wiley-VCH; [CrossRef]
    [Google Scholar]
  18. Puri P., Eckhardt T. H., Franken L. E., Fusetti F., Stuart M. C., Boekema E. J., Kuipers O. P., Kok J., Poolman B. 2014; Lactococcus lactis YfiA is necessary and sufficient for ribosome dimerization. Mol Microbiol 91:394–407 [View Article][PubMed]
    [Google Scholar]
  19. Sambrook J., Russell D. 2001 Molecular Cloning: a Laboratory Manual,, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Suzuki S., Tanigawa O., Akanuma G., Nanamiya H., Kawamura F., Tagami K., Nomura N., Kawabata T., Sekine Y. 2014; Enhanced expression of Bacillus subtilis yaaA can restore both the growth and the sporulation defects caused by mutation of rplB, encoding ribosomal protein L2. Microbiology 160:1040–1053 [View Article][PubMed]
    [Google Scholar]
  21. Suzuki S., Akanuma G., Kawamura F. 2015; Purification of 70S ribosomes from Bacillus subtilis . Bio-Protocol 5:e1432
    [Google Scholar]
  22. Tagami K., Nanamiya H., Kazo Y., Maehashi M., Suzuki S., Namba E., Hoshiya M., Hanai R., Tozawa Y., other authors. 2012; Expression of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp0 mutant of Bacillus subtilis triggers YvyD-dependent dimerization of ribosome. MicrobiologyOpen 1:115–134 [View Article][PubMed]
    [Google Scholar]
  23. Ueta M., Yoshida H., Wada C., Baba T., Mori H., Wada A. 2005; Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli . Genes Cells 10:1103–1112 [View Article][PubMed]
    [Google Scholar]
  24. Ueta M., Wada C., Wada A. 2010; Formation of 100S ribosomes in Staphylococcus aureus by the hibernation promoting factor homolog SaHPF. Genes Cells 15:43–58 [View Article][PubMed]
    [Google Scholar]
  25. Ueta M., Wada C., Daifuku T., Sako Y., Bessho Y., Kitamura A., Ohniwa R. L., Morikawa K., Yoshida H., other authors. 2013; Conservation of two distinct types of 100S ribosome in bacteria. Genes Cells 18:554–574 [View Article][PubMed]
    [Google Scholar]
  26. Varón D., Brody M. S., Price C. W. 1996; Bacillus subtilis operon under the dual control of the general stress transcription factor σB and the sporulation transcription factor σH . Mol Microbiol 20:339–350 [View Article][PubMed]
    [Google Scholar]
  27. Wada A. 1998; Growth phase coupled modulation of Escherichia coli ribosomes. Genes Cells 3:203–208 [View Article][PubMed]
    [Google Scholar]
  28. Wada A., Igarashi K., Yoshimura S., Aimoto S., Ishihama A. 1995; Ribosome modulation factor: stationary growth phase-specific inhibitor of ribosome functions from Escherichia coli . Biochem Biophys Res Commun 214:410–417 [View Article][PubMed]
    [Google Scholar]
  29. Wada A., Mikkola R., Kurland C. G., Ishihama A. 2000; Growth phase-coupled changes of the ribosome profile in natural isolates and laboratory strains of Escherichia coli . J Bacteriol 182:2893–2899 [View Article][PubMed]
    [Google Scholar]
  30. Yamagishi M., Matsushima H., Wada A., Sakagami M., Fujita N., Ishihama A. 1993; Regulation of the Escherichia coli rmf gene encoding the ribosome modulation factor: growth phase- and growth rate-dependent control. EMBO J 12:625–630[PubMed]
    [Google Scholar]
  31. Yano K., Wada T., Suzuki S., Tagami K., Matsumoto T., Shiwa Y., Ishige T., Kawaguchi Y., Masuda K., other authors. 2013; Multiple rRNA operons are essential for efficient cell growth and sporulation as well as outgrowth in Bacillus subtilis . Microbiology 159:2225–2236 [View Article][PubMed]
    [Google Scholar]
  32. Yoshida H., Maki Y., Kato H., Fujisawa H., Izutsu K., Wada C., Wada A. 2002; The ribosome modulation factor (RMF) binding site on the 100S ribosome of Escherichia coli . J Biochem 132:983–989 [View Article][PubMed]
    [Google Scholar]
  33. Zundel M. A., Basturea G. N., Deutscher M. P. 2009; Initiation of ribosome degradation during starvation in Escherichia coli . RNA 15:977–983 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000234
Loading
/content/journal/micro/10.1099/mic.0.000234
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed