1887

Abstract

Ribosome dimers are a translationally inactive form of ribosomes found in and many other bacterial cells. In this study, we found that the 70S ribosomes of dimerized during the early stationary phase and these dimers remained in the cytoplasm until regrowth was initiated. Ribosome dimerization during the stationary phase required the gene, which encodes a homologue of the hibernation-promoting factor (Hpf). The expression of was induced at an early stationary phase and its expression was observed throughout the rest of the experimental period, including the entire 6 h of the stationary phase. Ribosome dimerization followed the induction of in WT cells, but the dimerization was impaired in cells harbouring a deletion in the gene. Although the absence of ribosome dimerization in these Hpf-deficient cells did not affect their viability in the stationary phase, their ability to regrow from the stationary phase decreased. Thus, following the transfer of stationary-phase cells to fresh LB medium, Δ mutant cells grew slower than WT cells. This observed lag in growth of Δ cells was probably due to a delay in restoring their translational activity. During regrowth, the abundance of ribosome dimers in WT cells decreased with a concomitant increase in the abundance of 70S ribosomes and growth rate. These results suggest that the ribosome dimers, by providing 70S ribosomes to the cells, play an important role in facilitating rapid and efficient regrowth of cells under nutrient-rich conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000234
2016-03-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/3/448.html?itemId=/content/journal/micro/10.1099/mic.0.000234&mimeType=html&fmt=ahah

References

  1. Aiso T., Yoshida H., Wada A., Ohki R.. 2005; Modulation of mRNA stability participates in stationary-phase-specific expression of ribosome modulation factor. J Bacteriol187:1951–1958 [CrossRef][PubMed]
    [Google Scholar]
  2. Akanuma G., Habu C., Natori Y., Murayama R., Nanamiya H., Kawamura F.. 2006; Construction and characterization of Bacillus subtilis deletion mutants lacking the prophage 2-trnS region. FEMS Microbiol Lett258:220–226 [CrossRef][PubMed]
    [Google Scholar]
  3. Ashikaga S., Nanamiya H., Ohashi Y., Kawamura F.. 2000; Natural genetic competence in Bacillus subtilis natto OK2. J Bacteriol182:2411–2415 [CrossRef][PubMed]
    [Google Scholar]
  4. Drzewiecki K., Eymann C., Mittenhuber G., Hecker M.. 1998; The yvyD gene of Bacillus subtilis is under dual control of sigma B and sigma H. J Bacteriol180:6674–6680[PubMed]
    [Google Scholar]
  5. González-Pastor J. E., Hobbs E. C., Losick R.. 2003; Cannibalism by sporulating bacteria. Science301:510–513 [CrossRef][PubMed]
    [Google Scholar]
  6. Kaczanowska M., Rydén-Aulin M.. 2007; Ribosome biogenesis and the translation process in Escherichia coli . Microbiol Mol Biol Rev71:477–494 [CrossRef][PubMed]
    [Google Scholar]
  7. Kline B. C., McKay S. L., Tang W. W., Portnoy D. A.. 2015; The Listeria monocytogenes hibernation-promoting factor is required for the formation of 100S ribosomes, optimal fitness, and pathogenesis. J Bacteriol197:581–591 [CrossRef][PubMed]
    [Google Scholar]
  8. Maki Y., Yoshida H., Wada A.. 2000; Two proteins, YfiA and YhbH, associated with resting ribosomes in stationary phase Escherichia coli . Genes Cells5:965–974 [CrossRef][PubMed]
    [Google Scholar]
  9. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  10. Nanamiya H., Ohashi Y., Asai K., Moriya S., Ogasawara N., Fujita M., Sadaie Y., Kawamura F.. 1998; ClpC regulates the fate of a sporulation initiation sigma factor, sigmaH protein, in Bacillus subtilis at elevated temperatures. Mol Microbiol29:505–513[CrossRef]
    [Google Scholar]
  11. Nanamiya H., Shiomi E., Ogura M., Tanaka T., Asai K., Kawamura F.. 2003; Involvement of ClpX protein in the post-transcriptional regulation of a competence specific transcription factor, ComK protein, of Bacillus subtilis . J Biochem133:295–302 [CrossRef][PubMed]
    [Google Scholar]
  12. Nanamiya H., Akanuma G., Natori Y., Murayama R., Kosono S., Kudo T., Kobayashi K., Ogasawara N., Park S. M., other authors. 2004; Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol Microbiol52:273–283 [CrossRef][PubMed]
    [Google Scholar]
  13. Nanamiya H., Kasai K., Nozawa A., Yun C. S., Narisawa T., Murakami K., Natori Y., Kawamura F., Tozawa Y.. 2008; Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis . Mol Microbiol67:291–304[CrossRef]
    [Google Scholar]
  14. Nanamiya H., Sato M., Masuda K., Sato M., Wada T., Suzuki S., Natori Y., Katano M., Akanuma G., Kawamura F.. 2010; Bacillus subtilis mutants harbouring a single copy of the rRNA operon exhibit severe defects in growth and sporulation. Microbiology156:2944–2952 [CrossRef][PubMed]
    [Google Scholar]
  15. Nandy S. K., Venkatesh K. V.. 2008; Effect of carbon and nitrogen on the cannibalistic behavior of Bacillus subtilis . Appl Biochem Biotechnol151:424–432 [CrossRef][PubMed]
    [Google Scholar]
  16. Natori Y., Nanamiya H., Akanuma G., Kosono S., Kudo T., Ochi K., Kawamura F.. 2007; A fail-safe system for the ribosome under zinc-limiting conditions in Bacillus subtilis . Mol Microbiol63:294–307 [CrossRef][PubMed]
    [Google Scholar]
  17. Nierhaus K. H.. 2004; Ribosome assembly. In Protein Synthesis and Ribosome Structure pp85–105 Edited by Nierhaus K. H., Wilson D. N.. Weinheim: Wiley-VCH;[CrossRef]
    [Google Scholar]
  18. Puri P., Eckhardt T. H., Franken L. E., Fusetti F., Stuart M. C., Boekema E. J., Kuipers O. P., Kok J., Poolman B.. 2014; Lactococcus lactis YfiA is necessary and sufficient for ribosome dimerization. Mol Microbiol91:394–407 [CrossRef][PubMed]
    [Google Scholar]
  19. Sambrook J., Russell D.. 2001; Molecular Cloning: a Laboratory Manual,, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Suzuki S., Tanigawa O., Akanuma G., Nanamiya H., Kawamura F., Tagami K., Nomura N., Kawabata T., Sekine Y.. 2014; Enhanced expression of Bacillus subtilis yaaA can restore both the growth and the sporulation defects caused by mutation of rplB, encoding ribosomal protein L2. Microbiology160:1040–1053 [CrossRef][PubMed]
    [Google Scholar]
  21. Suzuki S., Akanuma G., Kawamura F.. 2015; Purification of 70S ribosomes from Bacillus subtilis . Bio-Protocol5:e1432
    [Google Scholar]
  22. Tagami K., Nanamiya H., Kazo Y., Maehashi M., Suzuki S., Namba E., Hoshiya M., Hanai R., Tozawa Y., other authors. 2012; Expression of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp0 mutant of Bacillus subtilis triggers YvyD-dependent dimerization of ribosome. MicrobiologyOpen1:115–134 [CrossRef][PubMed]
    [Google Scholar]
  23. Ueta M., Yoshida H., Wada C., Baba T., Mori H., Wada A.. 2005; Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli . Genes Cells10:1103–1112 [CrossRef][PubMed]
    [Google Scholar]
  24. Ueta M., Wada C., Wada A.. 2010; Formation of 100S ribosomes in Staphylococcus aureus by the hibernation promoting factor homolog SaHPF. Genes Cells15:43–58 [CrossRef][PubMed]
    [Google Scholar]
  25. Ueta M., Wada C., Daifuku T., Sako Y., Bessho Y., Kitamura A., Ohniwa R. L., Morikawa K., Yoshida H., other authors. 2013; Conservation of two distinct types of 100S ribosome in bacteria. Genes Cells18:554–574 [CrossRef][PubMed]
    [Google Scholar]
  26. Varón D., Brody M. S., Price C. W.. 1996; Bacillus subtilis operon under the dual control of the general stress transcription factor σB and the sporulation transcription factor σH . Mol Microbiol20:339–350 [CrossRef][PubMed]
    [Google Scholar]
  27. Wada A.. 1998; Growth phase coupled modulation of Escherichia coli ribosomes. Genes Cells3:203–208 [CrossRef][PubMed]
    [Google Scholar]
  28. Wada A., Igarashi K., Yoshimura S., Aimoto S., Ishihama A.. 1995; Ribosome modulation factor: stationary growth phase-specific inhibitor of ribosome functions from Escherichia coli . Biochem Biophys Res Commun214:410–417 [CrossRef][PubMed]
    [Google Scholar]
  29. Wada A., Mikkola R., Kurland C. G., Ishihama A.. 2000; Growth phase-coupled changes of the ribosome profile in natural isolates and laboratory strains of Escherichia coli . J Bacteriol182:2893–2899 [CrossRef][PubMed]
    [Google Scholar]
  30. Yamagishi M., Matsushima H., Wada A., Sakagami M., Fujita N., Ishihama A.. 1993; Regulation of the Escherichia coli rmf gene encoding the ribosome modulation factor: growth phase- and growth rate-dependent control. EMBO J12:625–630[PubMed]
    [Google Scholar]
  31. Yano K., Wada T., Suzuki S., Tagami K., Matsumoto T., Shiwa Y., Ishige T., Kawaguchi Y., Masuda K., other authors. 2013; Multiple rRNA operons are essential for efficient cell growth and sporulation as well as outgrowth in Bacillus subtilis . Microbiology159:2225–2236 [CrossRef][PubMed]
    [Google Scholar]
  32. Yoshida H., Maki Y., Kato H., Fujisawa H., Izutsu K., Wada C., Wada A.. 2002; The ribosome modulation factor (RMF) binding site on the 100S ribosome of Escherichia coli . J Biochem132:983–989 [CrossRef][PubMed]
    [Google Scholar]
  33. Zundel M. A., Basturea G. N., Deutscher M. P.. 2009; Initiation of ribosome degradation during starvation in Escherichia coli . RNA15:977–983 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000234
Loading
/content/journal/micro/10.1099/mic.0.000234
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error