1887

Abstract

possesses an arsenal of both cell-associated (flagella, pili, alginate, etc.) and extracellular (exotoxin A, proteases, type III secretion effectors, etc.) virulence factors. Among them, secreted proteases that damage host tissues are considered to play an important role in the pathogenesis of infections. We previously reported that EprS, an autotransporter protease of , induces host inflammatory responses through protease-activated receptors. However, little is known about the role of EprS as a virulence factor of . In this study, to investigate whether EprS participates in the pathogenicity of , we characterized various pathogenic phenotypes of the wild-type PAO1 strain and its -disrupted mutant. The growth assays demonstrated that the growth of the mutant was somewhat lower than that of the wild-type strain in a minimal medium containing BSA as the sole carbon and nitrogen source. Thus, these results indicate that would have a role in the growth of in the presence of limited nutrients, such as a medium containing proteinaceous materials as a sole nutrient source. Furthermore, disruption of resulted in a decreased production of elastase, pigments, autoinducers and surfactants, and a reduction of swimming and swarming motilities. In addition, the mutant exhibited a reduction in the ability to associate with A549 cells and an attenuation of virulence in leucopenic mice as compared with the wild-type strain. Collectively, these results suggest that EprS exerts pleiotropic effects on various pathogenic phenotypes of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000228
2016-02-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/2/318.html?itemId=/content/journal/micro/10.1099/mic.0.000228&mimeType=html&fmt=ahah

References

  1. Arora S. K., Neely A. N., Blair B., Lory S., Ramphal R.. 2005; Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect Immun73:4395–4398 [CrossRef][PubMed]
    [Google Scholar]
  2. Bardoel B. W., Hartsink D., Vughs M. M., de Haas C. J., van Strijp J. A., van Kessel K. P.. 2012; Identification of an immunomodulating metalloprotease of Pseudomonas aeruginosa (IMPa). Cell Microbiol14:902–913 [CrossRef][PubMed]
    [Google Scholar]
  3. Blanc D. S., Petignat C., Janin B., Bille J., Francioli P.. 1998; Frequency and molecular diversity of Pseudomonas aeruginosa upon admission and during hospitalization: a prospective epidemiologic study. Clin Microbiol Infect4:242–247 [CrossRef][PubMed]
    [Google Scholar]
  4. Bliss C. I.. 1934; The method of probits. Science79:38–39 [CrossRef][PubMed]
    [Google Scholar]
  5. Breidenstein E. B., de la Fuente-Núñez C., Hancock R. E.. 2011; Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol19:419–426 [CrossRef][PubMed]
    [Google Scholar]
  6. Burrows L. L.. 2012; Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol66:493–520 [CrossRef][PubMed]
    [Google Scholar]
  7. Caballero A. R., Moreau J. M., Engel L. S., Marquart M. E., Hill J. M., O'Callaghan R. J.. 2001; Pseudomonas aeruginosa protease IV enzyme assays and comparison to other Pseudomonas proteases. Anal Biochem290:330–337 [CrossRef][PubMed]
    [Google Scholar]
  8. Caiazza N. C., Shanks R. M., O'Toole G. A.. 2005; Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol187:7351–7361 [CrossRef][PubMed]
    [Google Scholar]
  9. Choi K. H., Schweizer H. P.. 2006; Mini-Tn 7 insertion in bacteria with single attTn 7 sites: example Pseudomonas aeruginosa. Nat Protoc1:153–161 [CrossRef][PubMed]
    [Google Scholar]
  10. Coggan K. A., Wolfgang M. C.. 2012; Global regulatory pathways and cross-talk control Pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr Issues Mol Biol14:47–70[PubMed]
    [Google Scholar]
  11. Coutte L., Antoine R., Drobecq H., Locht C., Jacob-Dubuisson F.. 2001; Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway. EMBO J20:5040–5048 [CrossRef][PubMed]
    [Google Scholar]
  12. Coutte L., Willery E., Antoine R., Drobecq H., Locht C., Jacob-Dubuisson F.. 2003; Surface anchoring of bacterial subtilisin important for maturation function. Mol Microbiol49:529–539 [CrossRef][PubMed]
    [Google Scholar]
  13. Cowell B. A., Twining S. S., Hobden J. A., Kwong M. S., Fleiszig S. M.. 2003; Mutation of lasA lasB reduces Pseudomonas aeruginosa invasion of epithelial cells. Microbiology149:2291–2299 [CrossRef][PubMed]
    [Google Scholar]
  14. Cryz S. J. Jr, Fürer E., Germanier R.. 1983; Simple model for the study of Pseudomonas aeruginosa infections in leukopenic mice. Infect Immun39:1067–1071[PubMed]
    [Google Scholar]
  15. Déziel E., Comeau Y., Villemur R.. 2001; Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol183:1195–1204 [CrossRef][PubMed]
    [Google Scholar]
  16. Déziel E., Lépine F., Milot S., Villemur R.. 2003; rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology149:2005–2013 [CrossRef][PubMed]
    [Google Scholar]
  17. Driscoll J. A., Brody S. L., Kollef M. H.. 2007; The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs67:351–368 [CrossRef][PubMed]
    [Google Scholar]
  18. Engel L. S., Hill J. M., Moreau J. M., Green L. C., Hobden J. A., O'Callaghan R. J.. 1998; Pseudomonas aeruginosa protease IV produces corneal damage and contributes to bacterial virulence. Invest Ophthalmol Vis Sci39:662–665[PubMed]
    [Google Scholar]
  19. Fleiszig S. M., Wiener-Kronish J. P., Miyazaki H., Vallas V., Mostov K. E., Kanada D., Sawa T., Yen T. S., Frank D. W.. 1997; Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S.. Infect Immun65:579–586[PubMed]
    [Google Scholar]
  20. Fleiszig S. M., Arora S. K., Van R., Ramphal R.. 2001; FlhA, a component of the flagellum assembly apparatus of Pseudomonas aeruginosa, plays a role in internalization by corneal epithelial cells. Infect Immun69:4931–4937 [CrossRef][PubMed]
    [Google Scholar]
  21. Gellatly S. L., Hancock R. E.. 2013; Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis67:159–173 [CrossRef][PubMed]
    [Google Scholar]
  22. Gooderham W. J., Hancock R. E.. 2009; Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol Rev33:279–294 [CrossRef][PubMed]
    [Google Scholar]
  23. Hancock R. E., Speert D. P.. 2000; Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat3:247–255 [CrossRef][PubMed]
    [Google Scholar]
  24. Henderson I. R., Navarro-Garcia F., Desvaux M., Fernandez R. C., Ala'Aldeen D.. 2004; Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev68:692–744 [CrossRef][PubMed]
    [Google Scholar]
  25. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.. 1998; A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene212:77–86 [CrossRef][PubMed]
    [Google Scholar]
  26. Imai Y., Matsushima Y., Sugimura T., Terada M.. 1991; A simple and rapid method for generating a deletion by PCR. Nucleic Acids Res19:2785 [CrossRef][PubMed]
    [Google Scholar]
  27. Institute of Laboratory Animal Resources 1996; Guide for the Care and Use of Laboratory Animals, rev. edn. Washington, D.C.: National Academy Press;
    [Google Scholar]
  28. Kharazmi A.. 1991; Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol Lett30:201–205 [CrossRef][PubMed]
    [Google Scholar]
  29. Kida Y., Higashimoto Y., Inoue H., Shimizu T., Kuwano K.. 2008; A novel secreted protease from Pseudomonas aeruginosa activates NF-κB through protease-activated receptors. Cell Microbiol10:1491–1504 [CrossRef][PubMed]
    [Google Scholar]
  30. Kida Y., Shimizu T., Kuwano K.. 2011; Cooperation between LepA and PlcH contributes to the in vivo virulence and growth of Pseudomonas aeruginosa in mice. Infect Immun79:211–219 [CrossRef][PubMed]
    [Google Scholar]
  31. Kida Y., Taira J., Yamamoto T., Higashimoto Y., Kuwano K.. 2013; EprS, an autotransporter protein of Pseudomonas aeruginosa, possessing serine protease activity induces inflammatory responses through protease-activated receptors. Cell Microbiol15:1168–1181 [CrossRef][PubMed]
    [Google Scholar]
  32. King E. O., Ward M. K., Raney D. E.. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med44:301–307[PubMed]
    [Google Scholar]
  33. Köhler T., Curty L. K., Barja F., van Delden C., Pechère J. C.. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol182:5990–5996 [CrossRef][PubMed]
    [Google Scholar]
  34. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  35. Luckett J. C., Darch O., Watters C., Abuoun M., Wright V., Paredes-Osses E., Ward J., Goto H., Heeb S., other authors. 2012; A novel virulence strategy for Pseudomonas aeruginosa mediated by an autotransporter with arginine-specific aminopeptidase activity. PLoS Pathog8:e1002854 [CrossRef][PubMed]
    [Google Scholar]
  36. Lyczak J. B., Cannon C. L., Pier G. B.. 2000; Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect2:1051–1060 [CrossRef][PubMed]
    [Google Scholar]
  37. Marquart M. E., Caballero A. R., Chomnawang M., Thibodeaux B. A., Twining S. S., O'Callaghan R. J.. 2005; Identification of a novel secreted protease from Pseudomonas aeruginosa that causes corneal erosions. Invest Ophthalmol Vis Sci46:3761–3768 [CrossRef][PubMed]
    [Google Scholar]
  38. Miyazaki S., Matsumoto T., Tateda K., Ohno A., Yamaguchi K.. 1995; Role of exotoxin A in inducing severe Pseudomonas aeruginosa infections in mice. J Med Microbiol43:169–175 [CrossRef][PubMed]
    [Google Scholar]
  39. Nadal Jimenez P., Koch G., Thompson J. A., Xavier K. B., Cool R. H., Quax W. J.. 2012; The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev76:46–65 [CrossRef][PubMed]
    [Google Scholar]
  40. O'Callaghan R. J., Engel L. S., Hobden J. A., Callegan M. C., Green L. C., Hill J. M.. 1996; Pseudomonas keratitis. The role of an uncharacterized exoprotein, protease IV, in corneal virulence. Invest Ophthalmol Vis Sci37:534–543[PubMed]
    [Google Scholar]
  41. Okkotsu Y., Little A. S., Schurr M. J.. 2014; The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes. Front Cell Infect Microbiol4:82[PubMed]
    [Google Scholar]
  42. Pelzer A., Polen T., Funken H., Rosenau F., Wilhelm S., Bott M., Jaeger K. E.. 2014; Subtilase SprP exerts pleiotropic effects in Pseudomonas aeruginosa. MicrobiologyOpen3:89–103 [CrossRef][PubMed]
    [Google Scholar]
  43. Preston M. J., Seed P. C., Toder D. S., Iglewski B. H., Ohman D. E., Gustin J. K., Goldberg J. B., Pier G. B.. 1997; Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. Infect Immun65:3086–3090[PubMed]
    [Google Scholar]
  44. Rawlings N. D., Waller M., Barrett A. J., Bateman A.. 2014; MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res42:D503–D509 [CrossRef][PubMed]
    [Google Scholar]
  45. Rickard A. H., Colacino K. R., Manton K. M., Morton R. I., Pulcini E., Pfeil J., Rhoads D., Wolcott R. D., James G.. 2010; Production of cell-cell signalling molecules by bacteria isolated from human chronic wounds. J Appl Microbiol108:1509–1522 [CrossRef][PubMed]
    [Google Scholar]
  46. Schweizer H. P.. 1992; Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol6:1195–1204 [CrossRef][PubMed]
    [Google Scholar]
  47. Siezen R. J., Leunissen J. A.. 1997; Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci6:501–523 [CrossRef][PubMed]
    [Google Scholar]
  48. Siezen R. J., Renckens B., Boekhorst J.. 2007; Evolution of prokaryotic subtilases: genome-wide analysis reveals novel subfamilies with different catalytic residues. Proteins67:681–694 [CrossRef][PubMed]
    [Google Scholar]
  49. Stepińska M., Trafny E. A.. 2008; Diverse type III secretion phenotypes among Pseudomonas aeruginosa strains upon infection of murine macrophage-like and endothelial cell lines. Microb Pathog44:448–458 [CrossRef][PubMed]
    [Google Scholar]
  50. Surette M. G., Bassler B. L.. 1998; Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci U S A95:7046–7050 [CrossRef][PubMed]
    [Google Scholar]
  51. Suter S.. 1994; The role of bacterial proteases in the pathogenesis of cystic fibrosis. Am J Respir Crit Care Med150:S118–S122 [CrossRef][PubMed]
    [Google Scholar]
  52. Tang A., Marquart M. E., Fratkin J. D., McCormick C. C., Caballero A. R., Gatlin H. P., O'Callaghan R. J.. 2009; Properties of PASP: a Pseudomonas protease capable of mediating corneal erosions. Invest Ophthalmol Vis Sci50:3794–3801 [CrossRef][PubMed]
    [Google Scholar]
  53. Tremblay J., Déziel E.. 2008; Improving the reproducibility of Pseudomonas aeruginosa swarming motility assays. J Basic Microbiol48:509–515 [CrossRef][PubMed]
    [Google Scholar]
  54. Uezumi I., Terashima M., Kohzuki T., Kato M., Irie K., Ochi H., Noguchi H.. 1992; Effects of a human antiflagellar monoclonal antibody in combination with antibiotics on Pseudomonas aeruginosa infection. Antimicrob Agents Chemother36:1290–1295 [CrossRef][PubMed]
    [Google Scholar]
  55. Vogel H. J., Bonner D. M.. 1956; Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem218:97–106[PubMed]
    [Google Scholar]
  56. Wilhelm S., Gdynia A., Tielen P., Rosenau F., Jaeger K. E.. 2007; The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. J Bacteriol189:6695–6703 [CrossRef][PubMed]
    [Google Scholar]
  57. Zolfaghar I., Evans D. J., Fleiszig S. M.. 2003; Twitching motility contributes to the role of pili in corneal infection caused by Pseudomonas aeruginosa. Infect Immun71:5389–5393 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000228
Loading
/content/journal/micro/10.1099/mic.0.000228
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error