1887

Abstract

RmpM is a periplasmic protein from that comprises an N-terminal domain (residues 1–47) and a separate globular C-terminal domain (residues 65–219) responsible for binding to peptidoglycan. Here we show, through the use of size exclusion chromatography and pull-down assays, that a recombinant N-terminal fragment of RmpM binds to both the major outer membrane porins, PorA and PorB. Analysis by semi-native SDS-PAGE established that both recombinant full-length RmpM and an N-terminal fragment, but not the C-terminal peptidoglycan-binding domain, were sufficient to stabilize the PorA and PorB oligomeric complexes. Evidence from binding assays indicated that the -diaminopimelate moiety plays an important role in peptidoglycan recognition by RmpM. Site-directed mutagenesis showed that two highly conserved residues, Asp120 and Arg135, play an important role in peptidoglycan binding. The yield of outer membrane vesicles, which have been used extensively as a vaccine against was considerably higher in an strain expressing a truncated N-terminal fragment of RmpM (ΔC-term ) than in the WT strain. The native oligomeric state of the PorA/PorB complexes was maintained in this strain. We conclude that the dual functions of RmpM are independent, and that it is possible to use this knowledge to engineer a strain with higher yield of outer membrane vesicles, whilst preserving PorA and PorB, which are key protective antigens, in their native oligomeric state.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000227
2016-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/2/364.html?itemId=/content/journal/micro/10.1099/mic.0.000227&mimeType=html&fmt=ahah

References

  1. Ashkenazy H., Erez E., Martz E., Pupko T., Ben-Tal N.. ( 2010;). ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38: (Web Server), W529–W533 [CrossRef] [PubMed].
    [Google Scholar]
  2. Atrih A., Bacher G., Allmaier G., Williamson M. P., Foster S. J.. ( 1999;). Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation. J Bacteriol 181: 3956–3966 [PubMed].
    [Google Scholar]
  3. De Mot R., Vanderleyden J.. ( 1994;). The C-terminal sequence conservation between OmpA-related outer membrane proteins and MotB suggests a common function in both Gram-positive and Gram-negative bacteria, possibly in the interaction of these domains with peptidoglycan. Mol Microbiol 12: 333–334 [CrossRef] [PubMed].
    [Google Scholar]
  4. Derrick J. P., Urwin R., Suker J., Feavers I. M., Maiden M. C. J.. ( 1999;). Structural and evolutionary inference from molecular variation in Neisseria porins. Infect Immun 67: 2406–2413 [PubMed].
    [Google Scholar]
  5. Feavers I. M., Pizza M.. ( 2009;). Meningococcal protein antigens and vaccines. Vaccine 27: (Suppl. 2), B42–B50 [CrossRef] [PubMed].
    [Google Scholar]
  6. Frasch C. E., Zollinger W. D., Poolman J. T.. ( 1985;). Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rev Infect Dis 7: 504–510 [CrossRef] [PubMed].
    [Google Scholar]
  7. Glauner B.. ( 1988;). Separation and quantification of muropeptides with high-performance liquid chromatography. Anal Biochem 172: 451–464 [CrossRef] [PubMed].
    [Google Scholar]
  8. Granoff D. M.. ( 2010;). Review of meningococcal group B vaccines. Clin Infect Dis 50: (Suppl. 2), S54–S65 [CrossRef] [PubMed].
    [Google Scholar]
  9. Grizot S., Buchanan S. K.. ( 2004;). Structure of the OmpA-like domain of RmpM from Neisseria meningitidis. Mol Microbiol 51: 1027–1037 [CrossRef] [PubMed].
    [Google Scholar]
  10. Jansen C., Wiese A., Reubsaet L., Dekker N., de Cock H., Seydel U., Tommassen J.. ( 2000;). Biochemical and biophysical characterization of in vitro folded outer membrane porin PorA of Neisseria meningitidis. Biochim Biophys Acta 1464: 284–298 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kaaijk P., van Straaten I., van de Waterbeemd B., Boot E. P., Levels L. M., van Dijken H. H., van den Dobbelsteen G. P.. ( 2013;). Preclinical safety and immunogenicity evaluation of a nonavalent PorA native outer membrane vesicle vaccine against serogroup B meningococcal disease. Vaccine 31: 1065–1071 [CrossRef] [PubMed].
    [Google Scholar]
  12. Klugman K. P., Gotschlich E. C., Blake M. S.. ( 1989;). Sequence of the structural gene (rmpM) for the class 4 outer membrane protein of Neisseria meningitidis, homology of the protein to gonococcal protein III and Escherichia coli OmpA, and construction of meningococcal strains that lack class 4 protein. Infect Immun 57: 2066–2071 [PubMed].
    [Google Scholar]
  13. Koebnik R., Locher K. P., Van Gelder P.. ( 2000;). Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37: 239–253 [CrossRef] [PubMed].
    [Google Scholar]
  14. Marzoa J., Abel A., Sánchez S., Chan H., Feavers I., Criado M. T., Ferreirós C. M.. ( 2009;). Analysis of outer membrane porin complexes of Neisseria meningitidis in wild-type and specific knock-out mutant strains. Proteomics 9: 648–656 [CrossRef] [PubMed].
    [Google Scholar]
  15. Marzoa J., Sánchez S., Ferreirós C. M., Criado M. T.. ( 2010;). Identification of Neisseria meningitidis outer membrane vesicle complexes using 2-D high resolution clear native/SDS-PAGE. J Proteome Res 9: 611–619 [CrossRef] [PubMed].
    [Google Scholar]
  16. Minetti C. A., Tai J. Y., Blake M. S., Pullen J. K., Liang S. M., Remeta D. P.. ( 1997;). Structural and functional characterization of a recombinant PorB class 2 protein from Neisseria meningitidis. Conformational stability and porin activity. J Biol Chem 272: 10710–10720 [CrossRef] [PubMed].
    [Google Scholar]
  17. Noinaj N., Easley N. C., Oke M., Mizuno N., Gumbart J., Boura E., Steere A. N., Zak O., Aisen P., other authors. ( 2012;). Structural basis for iron piracy by pathogenic Neisseria. Nature 483: 53–58 [CrossRef] [PubMed].
    [Google Scholar]
  18. Park J. S., Lee W. C., Yeo K. J., Ryu K. S., Kumarasiri M., Hesek D., Lee M., Mobashery S., Song J. H., other authors. ( 2012;). Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the Gram-negative bacterial outer membrane. FASEB J 26: 219–228 [CrossRef] [PubMed].
    [Google Scholar]
  19. Parsons L. M., Lin F., Orban J.. ( 2006;). Peptidoglycan recognition by Pal, an outer membrane lipoprotein. Biochemistry 45: 2122–2128 [CrossRef] [PubMed].
    [Google Scholar]
  20. Pautsch A., Schulz G. E.. ( 2000;). High-resolution structure of the OmpA membrane domain. J Mol Biol 298: 273–282 [CrossRef] [PubMed].
    [Google Scholar]
  21. Persson C., Oldenvi S., Steiner H.. ( 2007;). Peptidoglycan recognition protein LF: a negative regulator of Drosophila immunity. Insect Biochem Mol Biol 37: 1309–1316 [CrossRef] [PubMed].
    [Google Scholar]
  22. Potterton L., McNicholas S., Krissinel E., Gruber J., Cowtan K., Emsley P., Murshudov G. N., Cohen S., Perrakis A., Noble M.. ( 2004;). Developments in the CCP4 molecular-graphics project. Acta Crystallogr D Biol Crystallogr 60: 2288–2294 [CrossRef] [PubMed].
    [Google Scholar]
  23. Prinz T., Tommassen J.. ( 2000;). Association of iron-regulated outer membrane proteins of Neisseria meningitidis with the RmpM (class 4) protein. FEMS Microbiol Lett 183: 49–53 [CrossRef] [PubMed].
    [Google Scholar]
  24. Roujeinikova A.. ( 2008;). Crystal structure of the cell wall anchor domain of MotB, a stator component of the bacterial flagellar motor: implications for peptidoglycan recognition. Proc Natl Acad Sci U S A 105: 10348–10353 [CrossRef] [PubMed].
    [Google Scholar]
  25. Saleem M., Prince S. M., Rigby S. E. J., Imran M., Patel H., Chan H., Sanders H., Maiden M. C., Feavers I. M., Derrick J. P.. ( 2013;). Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis. PLoS One 8: e56746 [CrossRef] [PubMed].
    [Google Scholar]
  26. Sánchez S., Abel A., Arenas J., Criado M. T., Ferreirós C. M.. ( 2006;). Cross-linking analysis of antigenic outer membrane protein complexes of Neisseria meningitidis. Res Microbiol 157: 136–142 [CrossRef] [PubMed].
    [Google Scholar]
  27. Serino L., Nesta B., Leuzzi R., Fontana M. R., Monaci E., Mocca B. T., Cartocci E., Masignani V., Jerse A. E., other authors. ( 2007;). Identification of a new OmpA-like protein in Neisseria gonorrhoeae involved in the binding to human epithelial cells and in vivo colonization. Mol Microbiol 64: 1391–1403 [CrossRef] [PubMed].
    [Google Scholar]
  28. Tanabe M., Nimigean C. M., Iverson T. M.. ( 2010;). Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB. Proc Natl Acad Sci U S A 107: 6811–6816 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ünal C. M., Schaar V., Riesbeck K.. ( 2011;). Bacterial outer membrane vesicles in disease and preventive medicine. Semin Immunopathol 33: 395–408 [CrossRef] [PubMed].
    [Google Scholar]
  30. van de Waterbeemd B., Streefland M., van der Ley P., Zomer B., van Dijken H., Martens D., Wijffels R., van der Pol L.. ( 2010;). Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process. Vaccine 28: 4810–4816 [CrossRef] [PubMed].
    [Google Scholar]
  31. van de Waterbeemd B., Zomer G., van den Ijssel J., van Keulen L., Eppink M. H., van der Ley P., van der Pol L. A.. ( 2013;). Cysteine depletion causes oxidative stress and triggers outer membrane vesicle release by Neisseria meningitidis; implications for vaccine development. PLoS One 8: e54314 [CrossRef] [PubMed].
    [Google Scholar]
  32. van der Ley P., Heckels J. E., Virji M., Hoogerhout P., Poolman J. T.. ( 1991;). Topology of outer membrane porins in pathogenic Neisseria spp. Infect Immun 59: 2963–2971 [PubMed].
    [Google Scholar]
  33. Volokhina E. B., Beckers F., Tommassen J., Bos M. P.. ( 2009;). The β-barrel outer membrane protein assembly complex of Neisseria meningitidis. J Bacteriol 191: 7074–7085 [CrossRef] [PubMed].
    [Google Scholar]
  34. Wang Y., Kim K. S.. ( 2002;). Role of OmpA and IbeB in Escherichia coli K1 invasion of brain microvascular endothelial cells in vitro and in vivo. Pediatr Res 51: 559–563 [CrossRef] [PubMed].
    [Google Scholar]
  35. Yao Y., Barghava N., Kim J., Niederweis M., Marassi F. M.. ( 2012;). Molecular structure and peptidoglycan recognition of Mycobacterium tuberculosis ArfA (Rv0899). J Mol Biol 416: 208–220 [CrossRef] [PubMed].
    [Google Scholar]
  36. Yazdankhah S. P., Caugant D. A.. ( 2004;). Neisseria meningitidis: an overview of the carriage state. J Med Microbiol 53: 821–832 [CrossRef] [PubMed].
    [Google Scholar]
  37. Zeth K., Diederichs K., Welte W., Engelhardt H.. ( 2000;). Crystal structure of Omp32, the anion-selective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 Å resolution. Structure 8: 981–992 [CrossRef] [PubMed].
    [Google Scholar]
  38. Zeth K., Kozjak-Pavlovic V., Faulstich M., Fraunholz M., Hurwitz R., Kepp O., Rudel T.. ( 2013;). Structure and function of the PorB porin from disseminating Neisseria gonorrhoeae. Biochem J 449: 631–642 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000227
Loading
/content/journal/micro/10.1099/mic.0.000227
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error