1887

Abstract

, an aerobic Gram-negative bacterium, is capable of colonizing the respiratory tract of diverse animals and chronically persists inside the hosts by forming biofilm. Most known virulence factors in species are regulated by the BvgAS two-component transduction system. The Bvg-activated proteins play a critical role during host infection. OmpQ is an outer membrane porin protein which is expressed under BvgAS control. Here, we studied the contribution of OmpQ to the biofilm formation process by We found that the lack of expression of OmpQ did not affect the growth kinetics and final biomass of under planktonic growth conditions. The Δ mutant strain displayed no differences in attachment level and in early steps of biofilm formation. However, deletion of the gene attenuated the ability of to form a mature biofilm. Analysis of gene expression during the biofilm formation process by showed a dynamic expression pattern, with an increase of biofilm culture at 48 h. Moreover, we demonstrated that the addition of serum anti-OmpQ had the potential to reduce the biofilm biomass formation in a dose-dependent manner. In conclusion, we showed for the first time, to the best of our knowledge, evidence of the contribution of OmpQ to a process of importance for pathobiology. Our results indicate that OmpQ plays a role during the biofilm development process, particularly at later stages of development, and that this porin could be a potential target for strategies of biofilm formation inhibition.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000224
2016-02-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/2/351.html?itemId=/content/journal/micro/10.1099/mic.0.000224&mimeType=html&fmt=ahah

References

  1. Alvarez Hayes J., Erben E., Lamberti Y., Ayala M., Maschi F., Carbone C., Gatti B., Parisi G., Rodriguez M. E.. 2011; Identification of a new protective antigen of Bordetella pertussis . Vaccine29:8731–8739 [CrossRef][PubMed]
    [Google Scholar]
  2. Amato S. M., Brynildsen M. P.. 2014; Nutrient transitions are a source of persisters in Escherichia coli biofilms. PLoS One9:e93110 [CrossRef][PubMed]
    [Google Scholar]
  3. Armstrong S. K., Parr T. R. Jr, Parker C. D., Hancock R. E.. 1986; Bordetella pertussis major outer membrane porin protein forms small, anion-selective channels in lipid bilayer membranes. J Bacteriol166:212–216[PubMed]
    [Google Scholar]
  4. Aunkham A., Schulte A., Winterhalter M., Suginta W.. 2014; Porin involvement in cephalosporin and carbapenem resistance of Burkholderia pseudomallei . PLoS One9:e95918 [CrossRef][PubMed]
    [Google Scholar]
  5. Byun J., Verardo M. R., Sumengen B., Lewis G. P., Manjunath B. S., Fisher S. K.. 2006; Automated tool for the detection of cell nuclei in digital microscopic images: application to retinal images. Mol Vis12:949–960[PubMed]
    [Google Scholar]
  6. Chiappini E., Stival A., Galli L., de Martino M.. 2013; Pertussis re-emergence in the post-vaccination era. BMC Infect Dis13:151 [CrossRef][PubMed]
    [Google Scholar]
  7. Conover M. S., Sloan G. P., Love C. F., Sukumar N., Deora R.. 2010; The Bps polysaccharide of Bordetella pertussis promotes colonization and biofilm formation in the nose by functioning as an adhesin. Mol Microbiol77:1439–1455 [CrossRef][PubMed]
    [Google Scholar]
  8. Conover M. S., Mishra M., Deora R.. 2011; Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. PLoS One6:e16861 [CrossRef][PubMed]
    [Google Scholar]
  9. Conover M. S., Redfern C. J., Ganguly T., Sukumar N., Sloan G., Mishra M., Deora R.. 2012; BpsR modulates Bordetella biofilm formation by negatively regulating the expression of the Bps polysaccharide. J Bacteriol194:233–242 [CrossRef][PubMed]
    [Google Scholar]
  10. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M.. 1995; Microbial biofilms. Annu Rev Microbiol49:711–745 [CrossRef][PubMed]
    [Google Scholar]
  11. Costerton J. W., Stewart P. S., Greenberg E. P.. 1999; Bacterial biofilms: a common cause of persistent infections. Science284:1318–1322 [CrossRef][PubMed]
    [Google Scholar]
  12. Cotter P. A., Jones A. M.. 2003; Phosphorelay control of virulence gene expression in Bordetella . Trends Microbiol11:367–373 [CrossRef][PubMed]
    [Google Scholar]
  13. Cotter P. A., Miller J. F.. 1994; BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun62:3381–3390[PubMed]
    [Google Scholar]
  14. de Gouw D., Diavatopoulos D. A., Bootsma H. J., Hermans P. W., Mooi F. R.. 2011; Pertussis: a matter of immune modulation. FEMS Microbiol Rev35:441–474 [CrossRef][PubMed]
    [Google Scholar]
  15. de Gouw D., Serra D. O., de Jonge M. I., Hermans P. W. M., Wessels H.J.C.T., Zomer A., Yantorno O. M., Diavatopoulos D. A., Mooi F. R.. 2014; The vaccine potential of Bordetella pertussis biofilm-derived membrane proteins. Emerg Microbes Infect3:e58 [CrossRef][PubMed]
    [Google Scholar]
  16. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N.. 1990; Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol172:6568–6572
    [Google Scholar]
  17. Deora R., Bootsma H. J., Miller J. F., Cotter P. A.. 2001; Diversity in the Bordetella virulence regulon: transcriptional control of a Bvg-intermediate phase gene. Mol Microbiol40:669–683 [CrossRef][PubMed]
    [Google Scholar]
  18. Dolinsky T. J., Nielsen J. E., McCammon J. A., Baker N. A.. 2004; pdb2pqr: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res32:(Web Server)W665–W667 [CrossRef][PubMed]
    [Google Scholar]
  19. Donlan R. M., Costerton J. W.. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev15:167–193 [CrossRef][PubMed]
    [Google Scholar]
  20. Edwards R. A., Keller L. H., Schifferli D. M.. 1998; Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene207:149–157[CrossRef]
    [Google Scholar]
  21. Figurski D. H., Helinski D. R.. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A76:1648–1652[CrossRef]
    [Google Scholar]
  22. Finelli A., Gallant C. V., Jarvi K., Burrows L. L.. 2003; Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. J Bacteriol185:2700–2710 [CrossRef][PubMed]
    [Google Scholar]
  23. Finn T. M., Li Z., Kocsis E.. 1995; Identification of a Bordetella pertussis bvg-regulated porin-like protein. J Bacteriol177:805–809[PubMed]
    [Google Scholar]
  24. Fito-Boncompte L., Chapalain A., Bouffartigues E., Chaker H., Lesouhaitier O., Gicquel G., Bazire A., Madi A., Connil N., other authors. 2011; Full virulence of Pseudomonas aeruginosa requires OprF. Infect Immun79:1176–1186 [CrossRef][PubMed]
    [Google Scholar]
  25. Guindon S., Delsuc F., Dufayard J. F., Gascuel O.. 2009; Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol537:113–137 [CrossRef][PubMed]
    [Google Scholar]
  26. Hall-Stoodley L., Stoodley P.. 2005; Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol13:7–10 [CrossRef][PubMed]
    [Google Scholar]
  27. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersbøll B. K., Molin S.. 2000; Quantification of biofilm structures by the novel computer program comstat . Microbiology146:2395–2407 [CrossRef][PubMed]
    [Google Scholar]
  28. Higgins D. G., Bleasby A. J., Fuchs R.. 1992; clustal v: improved software for multiple sequence alignment. Comput Appl Biosci8:189–191[PubMed]
    [Google Scholar]
  29. Høiby N., Bjarnsholt T., Givskov M., Molin S., Ciofu O.. 2010; Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents35:322–332 [CrossRef][PubMed]
    [Google Scholar]
  30. Hot D., Antoine R., Renauld-Mongénie G., Caro V., Hennuy B., Levillain E., Huot L., Wittmann G., Poncet D., other authors. 2003; Differential modulation of Bordetella pertussis virulence genes as evidenced by DNA microarray analysis. Mol Genet Genomics269:475–486 [CrossRef][PubMed]
    [Google Scholar]
  31. Irie Y., Mattoo S., Yuk M. H.. 2004; The Bvg virulence control system regulates biofilm formation in Bordetella bronchiseptica . J Bacteriol186:5692–5698 [CrossRef][PubMed]
    [Google Scholar]
  32. Jaroszewski L., Rychlewski L., Li Z., Li W., Godzik A.. 2005; FFAS03: a server for profile–profile sequence alignments. Nucleic Acids Res33:(Web Server)W284–W288 [CrossRef][PubMed]
    [Google Scholar]
  33. Kinnear S. M., Marques R. R., Carbonetti N. H.. 2001; Differential regulation of Bvg-activated virulence factors plays a role in Bordetella pertussis pathogenicity. Infect Immun69:1983–1993 [CrossRef][PubMed]
    [Google Scholar]
  34. Koebnik R., Locher K. P., Van Gelder P.. 2000; Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol37:239–253 [CrossRef][PubMed]
    [Google Scholar]
  35. Kojima S., Nikaido H.. 2014; High salt concentrations increase permeability through OmpC channels of Escherichia coli . J Biol Chem289:26464–26473 [CrossRef][PubMed]
    [Google Scholar]
  36. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M., II & Peterson K. M.. 1994; pBBR1MCS: a broad-host-range cloning vector. Biotechniques16:800–802
    [Google Scholar]
  37. Liu X., Ferenci T.. 2001; An analysis of multifactorial influences on the transcriptional control of ompF and ompC porin expression under nutrient limitation. Microbiology147:2981–2989 [CrossRef][PubMed]
    [Google Scholar]
  38. Mah T. F., O'Toole G. A.. 2001; Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol9:34–39 [CrossRef][PubMed]
    [Google Scholar]
  39. Mattoo S., Cherry J. D.. 2005; Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev18:326–382 [CrossRef][PubMed]
    [Google Scholar]
  40. Mishra M., Parise G., Jackson K. D., Wozniak D. J., Deora R.. 2005; The BvgAS signal transduction system regulates biofilm development in Bordetella . J Bacteriol187:1474–1484 [CrossRef][PubMed]
    [Google Scholar]
  41. Missineo A., Di Poto A., Geoghegan J. A., Rindi S., Heilbronner S., Gianotti V., Arciola C. R., Foster T. J., Speziale P., Pietrocola G.. 2014; IsdC from Staphylococcus lugdunensis induces biofilm formation under low-iron growth conditions. Infect Immun82:2448–2459 [CrossRef][PubMed]
    [Google Scholar]
  42. Mulcahy H., Lewenza S.. 2011; Magnesium limitation is an environmental trigger of the Pseudomonas aeruginosa biofilm lifestyle. PLoS One6:e23307 [CrossRef][PubMed]
    [Google Scholar]
  43. Nicholson T. L., Brockmeier S. L., Loving C. L., Register K. B., Kehrli M. E. Jr, Stibitz S. E., Shore S. M.. 2012a; Phenotypic modulation of the virulent Bvg phase is not required for pathogenesis and transmission of Bordetella bronchiseptica in swine. Infect Immun80:1025–1036 [CrossRef][PubMed]
    [Google Scholar]
  44. Nicholson T. L., Conover M. S., Deora R.. 2012b; Transcriptome profiling reveals stage-specific production and requirement of flagella during biofilm development in Bordetella bronchiseptica . PLoS One7:e49166 [CrossRef][PubMed]
    [Google Scholar]
  45. Nikaido H.. 2003; Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev67:593–656 [CrossRef][PubMed]
    [Google Scholar]
  46. O'Toole G. A., Pratt L. A., Watnick P. I., Newman D. K., Weaver V. B., Kolter R.. 1999; Genetic approaches to study of biofilms. Methods Enzymol310:91–109 [CrossRef][PubMed]
    [Google Scholar]
  47. Packard E. R., Parton R., Coote J. G., Fry N. K.. 2004; Sequence variation and conservation in virulence-related genes of Bordetella pertussis isolates from the UK. J Med Microbiol53:355–365 [CrossRef][PubMed]
    [Google Scholar]
  48. Parise G., Mishra M., Itoh Y., Romeo T., Deora R.. 2007; Role of a putative polysaccharide locus in Bordetella biofilm development. J Bacteriol189:750–760 [CrossRef][PubMed]
    [Google Scholar]
  49. Schirmer T.. 1998; General and specific porins from bacterial outer membranes. J Struct Biol121:101–109 [CrossRef][PubMed]
    [Google Scholar]
  50. Schneider C. A., Rasband W. S., Eliceiri K. W.. 2012; NIH Image to ImageJ: 25 years of image analysis. Nat Methods9:671–675 [CrossRef][PubMed]
    [Google Scholar]
  51. Schulz G. E.. 1996; Porins: general to specific, native to engineered passive pores. Curr Opin Struct Biol6:485–490 [CrossRef][PubMed]
    [Google Scholar]
  52. Serra D., Bosch A., Russo D. M., Rodríguez M. E., Zorreguieta A., Schmitt J., Naumann D., Yantorno O.. 2007; Continuous nondestructive monitoring of Bordetella pertussis biofilms by Fourier transform infrared spectroscopy and other corroborative techniques. Anal Bioanal Chem387:1759–1767 [CrossRef][PubMed]
    [Google Scholar]
  53. Serra D. O., Lücking G., Weiland F., Schulz S., Görg A., Yantorno O. M., Ehling-Schulz M.. 2008; Proteome approaches combined with Fourier transform infrared spectroscopy revealed a distinctive biofilm physiology in Bordetella pertussis . Proteomics8:4995–5010 [CrossRef][PubMed]
    [Google Scholar]
  54. Serra D. O., Conover M. S., Arnal L., Sloan G. P., Rodriguez M. E., Yantorno O. M., Deora R.. 2011; FHA-mediated cell-substrate and cell-cell adhesions are critical for Bordetella pertussis biofilm formation on abiotic surfaces and in the mouse nose and the trachea. PLoS One6:e28811 [CrossRef][PubMed]
    [Google Scholar]
  55. Shahrooei M., Hira V., Stijlemans B., Merckx R., Hermans P. W., Van Eldere J.. 2009; Inhibition of Staphylococcus epidermidis biofilm formation by rabbit polyclonal antibodies against the SesC protein. Infect Immun77:3670–3678 [CrossRef][PubMed]
    [Google Scholar]
  56. Sloan G. P., Love C. F., Sukumar N., Mishra M., Deora R.. 2007; The Bordetella Bps polysaccharide is critical for biofilm development in the mouse respiratory tract. J Bacteriol189:8270–8276 [CrossRef][PubMed]
    [Google Scholar]
  57. Söding J., Remmert M., Biegert A., Lupas A. N.. 2006; HHsenser: exhaustive transitive profile search using HMM–HMM comparison. Nucleic Acids Res34:(Web Server)W374–W378 [CrossRef][PubMed]
    [Google Scholar]
  58. Stewart P. S.. 2003; Diffusion in biofilms. J Bacteriol185:1485–1491 [CrossRef][PubMed]
    [Google Scholar]
  59. Stewart P. S., Costerton J. W.. 2001; Antibiotic resistance of bacteria in biofilms. Lancet358:135–138 [CrossRef][PubMed]
    [Google Scholar]
  60. Tashiro Y., Nomura N., Nakao R., Senpuku H., Kariyama R., Kumon H., Kosono S., Watanabe H., Nakajima T., Uchiyama H.. 2008; Opr86 is essential for viability and is a potential candidate for a protective antigen against biofilm formation by Pseudomonas aeruginosa . J Bacteriol190:3969–3978 [CrossRef][PubMed]
    [Google Scholar]
  61. Tefon B. E., Maass S., Ozcengiz E., Becher D., Hecker M., Ozcengiz G.. 2011; A comprehensive analysis of Bordetella pertussis surface proteome and identification of new immunogenic proteins. Vaccine29:3583–3595 [CrossRef][PubMed]
    [Google Scholar]
  62. Webb B., Sali A.. 2014; Comparative protein structure modeling using modeller . Curr Protoc Bioinformatics47:5.6.1–5.6.32[CrossRef]
    [Google Scholar]
  63. Weir E.. 2002; Resurgence of Bordetella pertussis infection. Can Med Assoc J167:1146[PubMed]
    [Google Scholar]
  64. Wiederstein M., Sippl M. J.. 2007; ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res35:(Web Server)W407–W410 [CrossRef][PubMed]
    [Google Scholar]
  65. Williamson Y. M., Moura H., Simmons K., Whitmon J., Melnick N., Rees J., Woolfitt A., Schieltz D. M., Tondella M. L., other authors. 2012; A gel-free proteomic-based method for the characterization of Bordetella pertussis clinical isolates. J Microbiol Methods90:119–133 [CrossRef][PubMed]
    [Google Scholar]
  66. Woolfrey B. F., Moody J. A.. 1991; Human infections associated with Bordetella bronchiseptica . Clin Microbiol Rev4:243–255[PubMed]
    [Google Scholar]
  67. Yoon S. S., Hennigan R. F., Hilliard G. M., Ochsner U. A., Parvatiyar K., Kamani M. C., Allen H. L., DeKievit T. R., Gardner P. R., other authors. 2002; Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell3:593–603 [CrossRef][PubMed]
    [Google Scholar]
  68. Zeth K., Diederichs K., Welte W., Engelhardt H.. 2000; Crystal structure of Omp32, the anion-selective porin from Comamonas acidovorans, in complex with a periplasmic peptide at 2.1 Å resolution. Structure8:981–992 [CrossRef][PubMed]
    [Google Scholar]
  69. Zhu Y. Z., Cai C. S., Zhang W., Guo H. X., Zhang J. P., Ji Y. Y., Ma G. Y., Wu J. L., Li Q. T., other authors. 2010; Immunoproteomic analysis of human serological antibody responses to vaccination with whole-cell pertussis vaccine (WCV). PLoS One5:e13915 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000224
Loading
/content/journal/micro/10.1099/mic.0.000224
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error