1887

Abstract

Extracytoplasmic function (ECF) σ factors constitute a major component of the physicochemical sensory apparatus in bacteria. Most ECF σ factors are co-expressed with a negative regulator called an anti-σ factor that binds to its cognate σ factor and sequesters it from productive association with core RNA polymerase (RNAP). Anti-σ factors constitute an important element of signal transduction pathways that mediate an appropriate transcriptional response to changing environmental conditions. The genome encodes seven canonical ECF σ factors and six of these are co-expressed with experimentally verified anti-σ factors. also expresses an ECF-like atypical two-subunit σ factor composed of subunits SigO and RsoA that becomes active after exposure to certain cell-wall-acting antibiotics and to growth under acidic conditions. This work describes the identification and preliminary characterization of a protein (RsiO, formerly YvrL) that constitutes the anti-σ factor cognate to SigO–RsoA. Synthesis of RsiO represses SigO–RsoA-dependent transcription initiation by binding the N-terminus of SigO under neutral (pH 7) conditions. Reconstitution of the SigO–RsoA–RsiO regulatory system into a heterologous host reveals that the imposition of acid stress (pH 5.4) abolishes the ability of RsiO to repress SigO–RsoA-dependent transcription and this correlates with loss of RsiO binding affinity for SigO. A current model for RsiO function indicates that RsiO responds, either directly or indirectly, to increased extracytoplasmic hydrogen ion concentration and becomes inactivated. This results in the release of SigO into the cytoplasm, where it productively associates with RsoA and core RNAP to initiate transcription from target promoters in the cell.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000223
2016-02-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/2/398.html?itemId=/content/journal/micro/10.1099/mic.0.000223&mimeType=html&fmt=ahah

References

  1. Bartolomé B., Jubete Y., Martínez E., de la Cruz F.. ( 1991;). Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene 102: 75–78 [CrossRef] [PubMed].
    [Google Scholar]
  2. Burgess R. R., Travers A. A., Dunn J. J., Bautz E. K. F.. ( 1969;). Factor stimulating transcription by RNA polymerase. Nature 221: 43–46 [CrossRef] [PubMed].
    [Google Scholar]
  3. Butcher B. G., Helmann J. D.. ( 2006;). Identification of Bacillus subtilis sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by bacilli. Mol Microbiol 60: 765–782 [CrossRef] [PubMed].
    [Google Scholar]
  4. Cao M., Wang T., Ye R., Helmann J. D.. ( 2002;). Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σW and σM regulons. Mol Microbiol 45: 1267–1276 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chaba R., Grigorova I. L., Flynn J. M., Baker T. A., Gross C. A.. ( 2007;). Design principles of the proteolytic cascade governing the σE-mediated envelope stress response in Escherichia coli: keys to graded, buffered, and rapid signal transduction. Genes Dev 21: 124–136 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chang J.-M., Di Tommaso P., Taly J. F., Notredame C.. ( 2012;). Accurate multiple sequence alignment of transmembrane proteins with PSI-Coffee. BMC Bioinformatics 13: (Suppl. 4), S1 [CrossRef] [PubMed].
    [Google Scholar]
  7. Davis M. C., Kesthely C. A., Smith L. K., Breen J., MacLellan S. R.. ( 2015;). Functional reconstitution of an unusual Firmicutes σ factor into a Gram-negative heterologous host. Can J Microbiol 61: 818–826 [CrossRef] [PubMed].
    [Google Scholar]
  8. Ellermeier C. D., Losick R.. ( 2006;). Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes Dev 20: 1911–1922 [CrossRef] [PubMed].
    [Google Scholar]
  9. Feklistov A., Darst S. A.. ( 2011;). Structural basis for promoter − 10 element recognition by the bacterial RNA polymerase σ subunit. Cell 147: 1257–1269 [CrossRef] [PubMed].
    [Google Scholar]
  10. Feklístov A., Sharon B. D., Darst S. A., Gross C. A.. ( 2014;). Bacterial sigma factors: a historical, structural, and genomic perspective. Annu Rev Microbiol 68: 357–376 [CrossRef] [PubMed].
    [Google Scholar]
  11. Francez-Charlot A., Frunzke J., Reichen C., Ebneter J. Z., Gourion B., Vorholt J. A.. ( 2009;). Sigma factor mimicry involved in regulation of general stress response. Proc Natl Acad Sci U S A 106: 3467–3472 [CrossRef] [PubMed].
    [Google Scholar]
  12. Grigorova I. L., Chaba R., Zhong H. J., Alba B. M., Rhodius V., Herman C., Gross C. A.. ( 2004;). Fine-tuning of the Escherichia coli σE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA. Genes Dev 18: 2686–2697 [CrossRef] [PubMed].
    [Google Scholar]
  13. Guariglia-Oropeza V., Helmann J. D.. ( 2011;). Bacillus subtilis σV confers lysozyme resistance by activation of two cell wall modification pathways, peptidoglycan O-acetylation and d-alanylation of teichoic acids. J Bacteriol 193: 6223–6232 [CrossRef] [PubMed].
    [Google Scholar]
  14. Hachmann A. B., Angert E. R., Helmann J. D.. ( 2009;). Genetic analysis of factors affecting susceptibility of Bacillus subtilis to daptomycin. Antimicrob Agents Chemother 53: 1598–1609 [CrossRef] [PubMed].
    [Google Scholar]
  15. Hastie J. L., Williams K. B., Ellermeier C. D.. ( 2013;). The activity of σV, an extracytoplasmic function σ factor of Bacillus subtilis, is controlled by regulated proteolysis of the anti-σ factor RsiV. J Bacteriol 195: 3135–3144 [CrossRef] [PubMed].
    [Google Scholar]
  16. Hastie J. L., Williams K. B., Sepúlveda C., Houtman J. C., Forest K. T., Ellermeier C. D.. ( 2014;). Evidence of a bacterial receptor for lysozyme: binding of lysozyme to the anti-σ factor RsiV controls activation of the ECF σ factor σV. PLoS Genet 10: e1004643 [CrossRef] [PubMed].
    [Google Scholar]
  17. Heinrich J., Wiegert T.. ( 2009;). Regulated intramembrane proteolysis in the control of extracytoplasmic function sigma factors. Res Microbiol 160: 696–703 [CrossRef] [PubMed].
    [Google Scholar]
  18. Heinrich J., Hein K., Wiegert T.. ( 2009;). Two proteolytic modules are involved in regulated intramembrane proteolysis of Bacillus subtilis RsiW. Mol Microbiol 74: 1412–1426 [CrossRef] [PubMed].
    [Google Scholar]
  19. Helmann J. D.. ( 2002;). The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46: 47–110 [CrossRef] [PubMed].
    [Google Scholar]
  20. Ho T. D., Ellermeier C. D.. ( 2012;). Extra cytoplasmic function σ factor activation. Curr Opin Microbiol 15: 182–188 [CrossRef] [PubMed].
    [Google Scholar]
  21. Ho T. D., Hastie J. L., Intile P. J., Ellermeier C. D.. ( 2011;). The Bacillus subtilis extracytoplasmic function σ factor σV is induced by lysozyme and provides resistance to lysozyme. J Bacteriol 193: 6215–6222 [CrossRef] [PubMed].
    [Google Scholar]
  22. Hughes K. T., Mathee K.. ( 1998;). The anti-sigma factors. Annu Rev Microbiol 52: 231–286 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kang J. G., Paget M. S. B., Seok Y. J., Hahn M. Y., Bae J. B., Hahn J. S., Kleanthous C., Buttner M. J., Roe J. H.. ( 1999;). RsrA, an anti-sigma factor regulated by redox change. EMBO J 18: 4292–4298 [CrossRef] [PubMed].
    [Google Scholar]
  24. Karimova G., Pidoux J., Ullmann A., Ladant D.. ( 1998;). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95: 5752–5756 [CrossRef] [PubMed].
    [Google Scholar]
  25. Lin-Chao S., Chen W. T., Wong T. T.. ( 1992;). High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol Microbiol 6: 3385–3393 [CrossRef] [PubMed].
    [Google Scholar]
  26. MacLellan S. R., Wecke T., Helmann J. D.. ( 2008;). A previously unidentified σ factor and two accessory proteins regulate oxalate decarboxylase expression in Bacillus subtilis. Mol Microbiol 69: 954–967 [CrossRef] [PubMed].
    [Google Scholar]
  27. MacLellan S. R., Guariglia-Oropeza V., Gaballa A., Helmann J. D.. ( 2009a;). A two-subunit bacterial σ-factor activates transcription in Bacillus subtilis. Proc Natl Acad Sci U S A 106: 21323–21328 [CrossRef] [PubMed].
    [Google Scholar]
  28. MacLellan S. R., Helmann J. D., Antelmann H.. ( 2009b;). The YvrI alternative σ factor is essential for acid stress induction of oxalate decarboxylase in Bacillus subtilis. J Bacteriol 191: 931–939 [CrossRef] [PubMed].
    [Google Scholar]
  29. Mascher T., Hachmann A. B., Helmann J. D.. ( 2007;). Regulatory overlap and functional redundancy among Bacillus subtilis extracytoplasmic function sigma factors. J Bacteriol 189: 6919–6927 [CrossRef] [PubMed].
    [Google Scholar]
  30. Miller J. H.. ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  31. Mooney R. A., Darst S. A., Landick R.. ( 2005;). Sigma and RNA polymerase: an on-again, off-again relationship?. Mol Cell 20: 335–345 [CrossRef] [PubMed].
    [Google Scholar]
  32. Murakami K. S., Darst S. A.. ( 2003;). Bacterial RNA polymerases: the wholo story. Curr Opin Struct Biol 13: 31–39 [CrossRef] [PubMed].
    [Google Scholar]
  33. Omasits U., Ahrens C. H., Müller S., Wollscheid B.. ( 2014;). Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30: 884–886 [CrossRef] [PubMed].
    [Google Scholar]
  34. Paget M. S. B.. ( 2015;). Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules 5: 1245–1265 [CrossRef] [PubMed].
    [Google Scholar]
  35. Paget M. S. B., Helmann J. D.. ( 2003;). The σ70 family of sigma factors. Genome Biol 4: 203 [CrossRef].
    [Google Scholar]
  36. Paget M. S. B., Bae J. B., Hahn M. Y., Li W., Kleanthous C., Roe J. H., Buttner M. J.. ( 2001;). Mutational analysis of RsrA, a zinc-binding anti-sigma factor with a thiol-disulphide redox switch. Mol Microbiol 39: 1036–1047 [CrossRef] [PubMed].
    [Google Scholar]
  37. Schöbel S., Zellmeier S., Schumann W., Wiegert T.. ( 2004;). The Bacillus subtilis σW anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. Mol Microbiol 52: 1091–1105 [CrossRef] [PubMed].
    [Google Scholar]
  38. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., other authors. ( 2011;). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: 539 [CrossRef] [PubMed].
    [Google Scholar]
  39. Zweers J. C., Wiegert T., van Dijl J. M.. ( 2009;). Stress-responsive systems set specific limits to the overproduction of membrane proteins in Bacillus subtilis. Appl Environ Microbiol 75: 7356–7364 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000223
Loading
/content/journal/micro/10.1099/mic.0.000223
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error