1887

Abstract

Heat-shock proteins (Hsps) are chaperones required for the maintenance of cellular homeostasis in different fungal pathogens, playing an important role in the infectious process. This study investigated the effect of pharmacological inhibition of Hsp90 by radicicol on the / species complex – agents of the most common lifethreatening fungal infection amongst immunocompromised patients. The influence of Hsp90 inhibition was investigated regarding susceptibility to antifungal agents of planktonic and sessile cells, ergosterol concentration, cell membrane integrity, growth at 37 °C, production of virulence factors , and experimental infection in . Hsp90 inhibition inhibited the growth of planktonic cells of spp. at concentrations ranging from 0.5 to 2 μg ml and increased the inhibitory effect of azoles, especially fluconazole (FLC) ( < 0.05). Inhibition of Hsp90 also increased the antifungal activity of azoles against biofilm formation and mature biofilms of spp., notably for . Furthermore, Hsp90 inhibition compromised the permeability of the cell membrane, and reduced planktonic growth at 37 °C and the capsular size of spp. In addition, Hsp90 inhibition enhanced the antifungal activity of FLC during experimental infection using . Therefore, our results indicate that Hsp90 inhibition can be an important strategy in the development of new antifungal drugs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000222
2016-02-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/2/309.html?itemId=/content/journal/micro/10.1099/mic.0.000222&mimeType=html&fmt=ahah

References

  1. Breger J., Fuchs B. B., Aperis G., Moy T. I., Ausubel F. M., Mylonakis E.. ( 2007;). Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathog 3: e18 [CrossRef] [PubMed].
    [Google Scholar]
  2. Burnie J. P., Carter T. L., Hodgetts S. J., Matthews R. C.. ( 2006;). Fungal heat-shock proteins in human disease. FEMS Microbiol Rev 30: 53–88 [CrossRef] [PubMed].
    [Google Scholar]
  3. Charney J., Tomarelli R. M.. ( 1947;). A colorimetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem 171: 501–505 [PubMed].
    [Google Scholar]
  4. Chen S. C. A., Lewis R. E., Kontoyiannis D. P.. ( 2011;). Direct effects of non-antifungal agents used in cancer chemotherapy and organ transplantation on the development and virulence of Candida and Aspergillus species. Virulence 2: 280–295 [CrossRef] [PubMed].
    [Google Scholar]
  5. CLSI ( 2008;). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, 3rd edn, M27-A3 Wayne, PA: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  6. Coelho C., Bocca A. L., Casadevall A.. ( 2014;). The intracellular life of Cryptococcus neoformans. Annu Rev Pathol 9: 219–238 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cordero R. J. B., Bergman A., Casadevall A.. ( 2013;). Temporal behavior of capsule enlargement by Cryptococcus neoformans. Eukaryot Cell 12: 1383–1388 [CrossRef] [PubMed].
    [Google Scholar]
  8. Costa A. K., Sidrim J. J., Cordeiro R. A., Brilhante R. S., Monteiro A. J., Rocha M. F.. ( 2010;). Urban pigeons (Columba livia) as a potential source of pathogenic yeasts: a focus on antifungal susceptibility of Cryptococcus strains in Northeast Brazil. Mycopathologia 169: 207–213 [CrossRef] [PubMed].
    [Google Scholar]
  9. Cowen L. E., Singh S. D., Köhler J. R., Collins C., Zaas A. K., Schell W. A., Aziz H., Mylonakis E., Perfect J. R., other authors. ( 2009;). Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci U S A 106: 2818–2823 [CrossRef] [PubMed].
    [Google Scholar]
  10. de Aguiar Cordeiro R., Mourão C. I., Rocha M. F. G., de Farias Marques F. J., Teixeira C. E. C., de Oliveira Miranda D. F., Neto L. V. P., Brilhante R. S. N., de Jesus Pinheiro Gomes Bandeira T., Sidrim J. J. C.. ( 2013;). Antifolates inhibit Cryptococcus biofilms and enhance susceptibility of planktonic cells to amphotericin B. Eur J Clin Microbiol Infect Dis 32: 557–564 [CrossRef] [PubMed].
    [Google Scholar]
  11. Devi K. P., Nisha S. A., Sakthivel R., Pandian S. K.. ( 2010;). Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol 130: 107–115 [CrossRef] [PubMed].
    [Google Scholar]
  12. Enache-Angoulvant A., Chandenier J., Symoens F., Lacube P., Bolognini J., Douchet C., Poirot J. L., Hennequin C.. ( 2007;). Molecular identification of Cryptococcus neoformans serotypes. J Clin Microbiol 45: 1261–1265 [CrossRef] [PubMed].
    [Google Scholar]
  13. Eroles P., Sentandreu M., Elorza M. V., Sentandreu R.. ( 1997;). The highly immunogenic enolase and Hsp70p are adventitious Candida albicans cell wall proteins. Microbiology 143: 313–320 [CrossRef] [PubMed].
    [Google Scholar]
  14. Frases S., Nimrichter L., Viana N. B., Nakouzi A., Casadevall A.. ( 2008;). Cryptococcus neoformans capsular polysaccharide and exopolysaccharide fractions manifest physical, chemical, and antigenic differences. Eukaryot Cell 7: 319–327 [CrossRef] [PubMed].
    [Google Scholar]
  15. Fujita K., Irie M., Ping X., Taniguchi M.. ( 1999;). Antifungal activity of radicicol against Mucor flavus IFO 9560. J Biosci Bioeng 88: 380–386 [CrossRef] [PubMed].
    [Google Scholar]
  16. Harris J. R., Galanis E., Lockhart S. R.. ( 2014;). Cryptococcus gattii infections and virulence. Curr Fungal Infect Rep 8: 81–89 [CrossRef].
    [Google Scholar]
  17. Jones K. L., Murphy J. W.. ( 1998;). In vitro growth characteristics of two Cryptococcus neoformans isolates. J Ark Acad Sci 52: 80–84.
    [Google Scholar]
  18. Kakeya H., Udono H., Ikuno N., Yamamoto Y., Mitsutake K., Miyazaki T., Tomono K., Koga H., Tashiro T., other authors. ( 1997;). A 77-kilodalton protein of Cryptococcus neoformans, a member of the heat shock protein 70 family, is a major antigen detected in the sera of mice with pulmonary cryptococcosis. Infect Immun 65: 1653–1658 [PubMed].
    [Google Scholar]
  19. Kakeya H., Udono H., Maesaki S., Sasaki E., Kawamura S., Hossain M. A., Yamamoto Y., Sawai T., Fukuda M., other authors. ( 1999;). Heat shock protein 70 (hsp70) as a major target of the antibody response in patients with pulmonary cryptococcosis. Clin Exp Immunol 115: 485–490 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kang Y., Lee S. H., Lee J.. ( 2014;). Development of a selective medium for the fungal pathogen Cylindrocarpon destructans using radicicol. Plant Pathol J 30: 432–436 [CrossRef] [PubMed].
    [Google Scholar]
  21. Lamoth F., Juvvadi P. R., Fortwendel J. R., Steinbach W. J.. ( 2012;). Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryot Cell 11: 1324–1332 [CrossRef] [PubMed].
    [Google Scholar]
  22. Martinez L. R., Casadevall A.. ( 2006;). Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 50: 1021–1033 [CrossRef] [PubMed].
    [Google Scholar]
  23. Moran G. P., Pinjon E., Coleman D. C., Sullivan D. J.. ( 2007;). Analysis of drugs resistance in pathogenic fungi. . In Medical Mycology: Cellular and Molecular Techniques, pp. 93–113. Edited by Kanavagh K.. New York: Wiley;.
    [Google Scholar]
  24. Mylonakis E., Ausubel F. M., Perfect J. R., Heitman J., Calderwood S. B.. ( 2002;). Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc Natl Acad Sci U S A 99: 15675–15680 [CrossRef] [PubMed].
    [Google Scholar]
  25. Ngamskulrungroj P., Meyer W.. ( 2009;). Melanin production at 37°C is linked to the high virulent Cryptococcus gattii Vancouver Island outbreak genotype VGIIa. Australas Mycologist 28: 9–14.
    [Google Scholar]
  26. Nicola A. M., Andrade R. V., Dantas A. S., Andrade P. A., Arraes F. B. M., Fernandes L., Silva-Pereira I., Felipe M. S.. ( 2008;). The stress responsive and morphologically regulated hsp90 gene from Paracoccidioides brasiliensis is essential to cell viability. BMC Microbiol 8: 158 [CrossRef] [PubMed].
    [Google Scholar]
  27. Nooney L., Matthews R. C., Burnie J. P.. ( 2005;). Evaluation of Mycograb®, amphotericin B, caspofungin, and fluconazole in combination against Cryptococcus neoformans by checkerboard and time-kill methodologies. Diagn Microbiol Infect Dis 51: 19–29 [CrossRef] [PubMed].
    [Google Scholar]
  28. Odds F. C.. ( 2003;). Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52: 1 [CrossRef] [PubMed].
    [Google Scholar]
  29. Park B. J., Wannemuehler K. A., Marston B. J., Govender N., Pappas P. G., Chiller T. M.. ( 2009;). Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23: 525–530 [CrossRef] [PubMed].
    [Google Scholar]
  30. Pierce C. G., Uppuluri P., Tristan A. R., Wormley F. L. Jr, Mowat E., Ramage G., Lopez-Ribot J. L.. ( 2008;). A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc 3: 1494–1500 [CrossRef] [PubMed].
    [Google Scholar]
  31. Pukkila-Worley R., Gerrald Q. D., Kraus P. R., Boily M. J., Davis M. J., Giles S. S., Cox G. M., Heitman J., Alspaugh J. A.. ( 2005;). Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot Cell 4: 190–201 [CrossRef] [PubMed].
    [Google Scholar]
  32. Robbins N., Uppuluri P., Nett J., Rajendran R., Ramage G., Lopez-Ribot J. L., Andes D., Cowen L. E.. ( 2011;). Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7: e1002257 [CrossRef] [PubMed].
    [Google Scholar]
  33. Rodrigues M. L., Nakayasu E. S., Oliveira D. L., Nimrichter L., Nosanchuk J. D., Almeida I. C., Casadevall A.. ( 2008;). Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 7: 58–67 [CrossRef] [PubMed].
    [Google Scholar]
  34. Santos J. R. A., Holanda R. A., Frases S., Bravim M., Araujo G. S., Santos P. C., Costa M. C., Ribeiro M. J., Ferreira G. F., other authors. ( 2014;). Fluconazole alters the polysaccharide capsule of Cryptococcus gattii and leads to distinct behaviors in murine cryptococcosis. PLoS One 9: e112669 [CrossRef] [PubMed].
    [Google Scholar]
  35. Shapiro R. S., Cowen L.. ( 2010;). Coupling temperature sensing and development: Hsp90 regulates morphogenetic signalling in Candida albicans. Virulence 1: 45–48 [CrossRef] [PubMed].
    [Google Scholar]
  36. Shapiro R. S., Cowen L. E.. ( 2012;). Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing. MBio 3: e00238–e00212 [CrossRef] [PubMed].
    [Google Scholar]
  37. Shapiro R. S., Zaas A. K., Betancourt-Quiroz M., Perfect J. R., Cowen L. E.. ( 2012;). The Hsp90 co-chaperone Sgt1 governs Candida albicans morphogenesis and drug resistance. PLoS One 7: e44734 [CrossRef] [PubMed].
    [Google Scholar]
  38. Silveira C. P., Piffer A. C., Kmetzsch L., Fonseca F. L., Soares D. A., Staats C. C., Rodrigues M. L., Schrank A., Vainstein M. H.. ( 2013;). The heat shock protein (Hsp) 70 of Cryptococcus neoformans is associated with the fungal cell surface and influences the interaction between yeast and host cells. Fungal Genet Biol 60: 53–63 [CrossRef] [PubMed].
    [Google Scholar]
  39. Steen B. R., Zuyderduyn S., Toffaletti D. L., Marra M., Jones S. J. M., Perfect J. R., Kronstad J.. ( 2003;). Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot Cell 2: 1336–1349 [CrossRef] [PubMed].
    [Google Scholar]
  40. Tamayo D., Muñoz J. F., Torres I., Almeida A. J., Restrepo A., McEwen J. G., Hernández O.. ( 2013;). Involvement of the 90 kDa heat shock protein during adaptation of Paracoccidioides brasiliensis to different environmental conditions. Fungal Genet Biol 51: 34–41 [CrossRef] [PubMed].
    [Google Scholar]
  41. Vitale R. G., Pascuccelli V., Afeltra J.. ( 2012;). Influence of capsule size on the in vitro activity of antifungal agents against clinical Cryptococcus neoformans var. grubii strains. J Med Microbiol 61: 384–388 [CrossRef] [PubMed].
    [Google Scholar]
  42. Zaragoza O., Casadevall A.. ( 2004;). Experimental modulation of capsule size in Cryptococcus neoformans. Biol Proced Online 6: 10–15 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000222
Loading
/content/journal/micro/10.1099/mic.0.000222
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error