1887

Abstract

The -demethylation of phenyl methyl ethers under anaerobic conditions is a metabolic feature of acetogens and spp. Desulfitobacteria as well as most acetogens are Gram-positive bacteria with a low GC content and belong to the phylum . The consumption of the phenyl methyl ether syringate was studied in enrichment cultures originating from five different topsoils. spp. were detected in all topsoils via quantitative PCR. Desulfitobacteria could be enriched using the -demethylation of syringate as a growth-selective process. The enrichment was significantly favoured by an external electron acceptor such as 3-chloro-4-hydroxyphenylacetate or thiosulfate. Upon cultivation in the presence of syringate and thiosulfate, which naturally occur in soil, a maximum number of 16S rRNA gene copies of spp. was reached within the first three subcultivation steps and accounted for 3–10 % of the total microbial community depending on the soil type. Afterwards, a loss of gene copies was observed. Community analyses revealed that , , and were the main phyla in the initial soil samples. Upon addition of syringate and thiosulfate as growth substrates, these phyla were rapidly outcompeted by , which were under-represented in soil. The main genera identified were , , , and , which might be responsible for outcompeting the desulfitobacteria. Most of these organisms belong to the acetogens, which have previously been described to demethylate phenyl methyl ethers. The shift of the native community structure to almost exclusively supports the participation of members of this phylum in environmental demethylation processes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000218
2016-02-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/2/224.html?itemId=/content/journal/micro/10.1099/mic.0.000218&mimeType=html&fmt=ahah

References

  1. Allen T. D., Caldwell M. E., Lawson P. A., Huhnke R. L., Tanner R. S.. 2010; Alkalibaculum bacchi gen. nov., sp. nov., a CO-oxidizing, ethanol-producing acetogen isolated from livestock-impacted soil. Int J Syst Evol Microbiol60:2483–2489 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  3. Bache R., Pfennig N.. 1981; Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch Microbiol130:255–261 [CrossRef]
    [Google Scholar]
  4. Bouchard B., Beaudet R., Villemur R., McSween G., Lépine F., Bisaillon J.-G.. 1996; Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int J Syst Bacteriol46:1010–1015 [CrossRef][PubMed]
    [Google Scholar]
  5. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  6. Breitenstein A., Saano A., Salkinoja-Salonen M., Andreesen J. R., Lechner U.. 2001; Analysis of a 2,4,6-trichlorophenol-dehalogenating enrichment culture and isolation of the dehalogenating member Desulfitobacterium frappieri strain TCP-A. Arch Microbiol175:133–142 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen C.-L., Chang H.-M., Kirk T. K.. 1982; Aromatic acids produced during degradation of lignin in spruce wood by Phanerochaete chrysosporium . Holzforschung36:3–9 [CrossRef]
    [Google Scholar]
  8. Chen C.-L., Chang H.-M., Kirk T. K.. 1983; Carboxylic acids produced through oxidative cleavage of aromatic rings during degradation of lignin in spruce wood by Phanerochaete chrysosporium . J Wood Chem Technol3:35–57 [CrossRef]
    [Google Scholar]
  9. Colombo C., Palumbo G., He J. Y., Pinton R., Cesco S.. 2014; Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soils Sediments14:538–548 [CrossRef]
    [Google Scholar]
  10. Cypionka H., Pfennig N.. 1986; Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol143:396–399 [CrossRef]
    [Google Scholar]
  11. Daniel S. L., Keith E. S., Yang H., Lin Y. S., Drake H. L.. 1991; Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: expression and specificity of the co-dependent O-demethylating activity. Biochem Biophys Res Commun180:416–422 [CrossRef][PubMed]
    [Google Scholar]
  12. Drake H. L., Küsel K., Matthies C.. 2006; Acetogenic prokaryotes. Prokaryotes2:354–420 [CrossRef]
    [Google Scholar]
  13. Drzyzga O., Gerritse J., Dijk J. A., Elissen H., Gottschal J. C.. 2001; Coexistence of a sulphate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulfate and tetrachloroethene. Environ Microbiol3:92–99 [CrossRef][PubMed]
    [Google Scholar]
  14. Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R.. 2011; uchime improves sensitivity and speed of chimera detection. Bioinformatics27:2194–2200 [CrossRef][PubMed]
    [Google Scholar]
  15. Garcia S. L., Jangid K., Whitman W. B., Das K. C.. 2011; Transition of microbial communities during the adaption to anaerobic digestion of carrot waste. Bioresour Technol102:7249–7256 [CrossRef][PubMed]
    [Google Scholar]
  16. Gebauer G., Rehder H., Wollenweber B.. 1988; Nitrate, nitrate reduction and organic nitrogen in plants from different ecological taxonomic groups. Oecologica75:371–385 [CrossRef]
    [Google Scholar]
  17. Grbić-Galić D.. 1986; O-Demethylation, dehydroxylation, ring-reduction and cleavage of aromatic substrates by Enterobacteriaceae under anaerobic conditions. J Appl Bacteriol61:491–497 [CrossRef][PubMed]
    [Google Scholar]
  18. Hanselmann K. W., Kaiser J. P., Wenk M., Schön R., Bachofen R.. 1995; Growth on methanol and conversion of methoxylated aromatic substrates by Desulfotomaculum orientis in the presence and absence of sulfate. Microbiol Res150:387–401 [CrossRef]
    [Google Scholar]
  19. Hartmann M., Niklaus P. A., Zimmermann S., Schmutz S., Kremer J., Abarenkov K., Lüscher P., Widmer F., Frey B.. 2014; Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J8:226–244 [CrossRef][PubMed]
    [Google Scholar]
  20. Higuchi T.. 1990; Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol24:23–63 [CrossRef]
    [Google Scholar]
  21. Janssen P. H.. 2006; Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol72:1719–1728 [CrossRef][PubMed]
    [Google Scholar]
  22. Karn S. K., Balda S.. 2013; Bioremediation 2,4,6,-trichlorophenol (2,4,6-TCP) by Shigella sp. S2 isolated from industrial dumpsite. Bioremediat J17:71–78 [CrossRef]
    [Google Scholar]
  23. Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., Glöckner F. O.. 2013; Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res41:e1 [CrossRef][PubMed]
    [Google Scholar]
  24. Kögel I.. 1986; Estimation and decomposition pattern of the lignin component in forest humus layers. Soil Biol Biochem18:589–594 [CrossRef]
    [Google Scholar]
  25. Kozich J. J., Westcott S. L., Baxter N. T., Highlander S. K., Schloss P. D.. 2013; Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol79:5112–5120 [CrossRef][PubMed]
    [Google Scholar]
  26. Kreher S., Schilhabel A., Diekert G.. 2008; Enzymes involved in the anoxic utilization of phenyl methyl ethers by Desulfitobacterium hafniense DCB2 and Desulfitobacterium hafniense PCE-S. Arch Microbiol190:489–495 [CrossRef][PubMed]
    [Google Scholar]
  27. Lanthier M., Villemur R., Lépine F., Bisaillon J., Beaudet R.. 2001; Geographic distribution of Desulfitobacterium frappieri PCP-1 and Desulfitobacterium spp. in soils from the province of Quebec, Canada. FEMS Microbiol Ecol36:185–191 [CrossRef][PubMed]
    [Google Scholar]
  28. Lanthier M., Juteau P., Lépine F., Beaudet R., Villemur R.. 2005; Desulfitobacterium hafniense is present in a high proportion within the biofilms of a high-performance pentachlorophenol-degrading, methanogenic fixed-film reactor. Appl Environ Microbiol71:1058–1065 [CrossRef][PubMed]
    [Google Scholar]
  29. Liesack W., Bak F., Kreft J.-U., Stackebrandt E.. 1994; Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol162:85–90[PubMed]
    [Google Scholar]
  30. Mechichi T., Labat M., Garcia J. L., Thomas P., Patel B. K.. 1999a; Sporobacterium olearium gen. nov., sp. nov., a new methanethiol-producing bacterium that degrades aromatic compounds, isolated from an olive mill wastewater treatment digester. Int J Syst Bacteriol49:1741–1748 [CrossRef][PubMed]
    [Google Scholar]
  31. Mechichi T., Labat M., Patel B. K. C., Woo T. H. S., Thomas P., Garcia J. L.. 1999b; Clostridium methoxybenzovorans sp. nov., a new aromatic O-demethylating homoacetogen from an olive mill wastewater treatment digester. Int J Syst Bacteriol49:1201–1209 [CrossRef][PubMed]
    [Google Scholar]
  32. Mingo F. S., Studenik S., Diekert G.. 2014; Conversion of phenyl methyl ethers by Desulfitobacterium spp. and screening for the genes involved. FEMS Microbiol Ecol90:783–790 [CrossRef][PubMed]
    [Google Scholar]
  33. Muyzer G., de Waal E. C., Uitterlinden A. G.. 1993; Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol59:695–700[PubMed]
    [Google Scholar]
  34. Neumann A., Engelmann T., Schmitz R., Greiser Y., Orthaus A., Diekert G.. 2004; Phenyl methyl ethers: novel electron donors for respiratory growth of Desulfitobacterium hafniense and Desulfitobacterium sp. strain PCE-S. Arch Microbiol181:245–249 [CrossRef][PubMed]
    [Google Scholar]
  35. Niggemyer A., Spring S., Stackebrandt E., Rosenzweig R. F.. 2001; Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium . Appl Environ Microbiol67:5568–5580 [CrossRef][PubMed]
    [Google Scholar]
  36. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O., ribosomal R. N. A.. 2013; The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res41:(D1)D590–D596[PubMed][CrossRef]
    [Google Scholar]
  37. Quentin K.-E., Pachmayr F.. 1964; [Determination of thiosulfate in the sulfur-containing mineral waters]. Fresenius Z Anal Chem200:250–256 (in German) [CrossRef]
    [Google Scholar]
  38. Rouzeau-Szynalski K., Maillard J., Holliger C.. 2011; Frequent concomitant presence of Desulfitobacterium spp. and Dehalococcoides spp. in chloroethene-dechlorinating microbial communities. Appl Microbiol Biotechnol90:361–368 [CrossRef][PubMed]
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Sánchez-Andrea I., Rodríguez N., Amils R., Sanz J. L.. 2011; Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol77:6085–6093 [CrossRef][PubMed]
    [Google Scholar]
  41. Sánchez-Andrea I., Rojas-Ojeda P., Amils R., Sanz J. L.. 2012; Screening of anaerobic activities in sediments of an acidic environment: Tinto River. Extremophiles16:829–839 [CrossRef][PubMed]
    [Google Scholar]
  42. Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H., other authors. 2009; Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol75:7537–7541 [CrossRef][PubMed]
    [Google Scholar]
  43. Schloss P. D., Gevers D., Westcott S. L.. 2011; Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One6:e27310 [CrossRef][PubMed]
    [Google Scholar]
  44. Sharma P. K., McCarty P. L.. 1996; Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Appl Environ Microbiol62:761–765[PubMed]
    [Google Scholar]
  45. Smith C. J., Osborn A. M.. 2009; Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol67:6–20 [CrossRef][PubMed]
    [Google Scholar]
  46. Starkey R. L.. 1950; Relations of microorganisms to transformations of sulfur in soils. Soil Sci70:55–65 [CrossRef]
    [Google Scholar]
  47. Stupperich E., Konle R.. 1993; Corrinoid-dependent methyl transfer reactions are involved in methanol and 3,4-dimethoxybenzoate metabolism by Sporomusa ovata . Appl Environ Microbiol59:3110–3116[PubMed]
    [Google Scholar]
  48. Traunecker J., Preuss A., Diekert G.. 1991; Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium. Arch Microbiol156:416–421 [CrossRef]
    [Google Scholar]
  49. Utkin I., Woese C., Wiegel J.. 1994; Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int J Syst Bacteriol44:612–619 [CrossRef][PubMed]
    [Google Scholar]
  50. Villemur R., Lanthier M., Beaudet R., Lépine F.. 2006; The Desulfitobacterium genus. FEMS Microbiol Rev30:706–733 [CrossRef][PubMed]
    [Google Scholar]
  51. Wang Q., Garrity G. M., Tiedje J. M., Cole J. R.. 2007; Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol73:5261–5267 [CrossRef][PubMed]
    [Google Scholar]
  52. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  53. Whitehead D. C.. 1964; Identification of p-hydroxybenzoic, vanillic, p-coumaric and ferulic acids in soils. Nature202:417–418 [CrossRef][PubMed]
    [Google Scholar]
  54. Wind T., Conrad R.. 1995; Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfate-reducing bacteria in planted and unplanted paddy soil. FEMS Microbiol Ecol18:257–266 [CrossRef]
    [Google Scholar]
  55. Yoshida N., Asahi K., Sakakibara Y., Miyake K., Katayama A.. 2007; Isolation and quantitative detection of tetrachloroethene (PCE)-dechlorinating bacteria in unsaturated subsurface soils contaminated with chloroethenes. J Biosci Bioeng104:91–97 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000218
Loading
/content/journal/micro/10.1099/mic.0.000218
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error