1887

Abstract

In Japan, the number of patients with streptococcal toxic shock syndrome is reported to be increasing. (A) gene-positive macrolide-resistant 1 strains are thought to possibly contribute to the rise in the frequency of STSS. Although analyses of macrolide-resistant mechanisms, including (A) resistance, have been performed mainly in , the role of this gene in has not been completely investigated. Therefore, to the best of our knowledge, we established the first (A)-knockout strain using an 1-type strain, and tested its susceptibility to erythromycin, clarithromycin and azithromycin. We found that the antimicrobial susceptibilities were almost identical to those of the parental strain. Hence, we established a knockout strain for another gene, (D), that is located immediately downstream of (A). The macrolide resistances of the resulting strain significantly decreased, and were further altered when both (A) and (D) were knocked out. The introduction of the (D) gene into a macrolide-sensitive strain conferred more resistance than the introduction of the (A) gene. The erythromycin susceptibilities of knockout strains were further dissected using two additional 4- and 75-type strains. We found almost identical results for both strains except for the (A) knockout 4 type, whose susceptibility was altered, although the change was less than that for the (D) knockout. These results suggest that both (A) and (D) are involved in macrolide resistance in , and that the (D) gene plays a more predominant role in macrolide resistance than (A).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000206
2016-01-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/1/46.html?itemId=/content/journal/micro/10.1099/mic.0.000206&mimeType=html&fmt=ahah

References

  1. Ambrose K. D. , Nisbet R. , Stephens D. S. . ( 2005;). Macrolide efflux in Streptococcus pneumoniae is mediated by a dual efflux pump (mel and mef) and is erythromycin inducible. Antimicrob Agents Chemother 49: 4203–4209 [CrossRef] [PubMed].
    [Google Scholar]
  2. Banks D. J. , Porcella S. F. , Barbian K. D. , Martin J. M. , Musser J. M. . ( 2003;). Structure and distribution of an unusual chimeric genetic element encoding macrolide resistance in phylogenetically diverse clones of group A Streptococcus . J Infect Dis 188: 1898–1908 [CrossRef] [PubMed].
    [Google Scholar]
  3. Brenciani A. , Ojo K. K. , Monachetti A. , Menzo S. , Roberts M. C. , Varaldo P. E. , Giovanetti E. . ( 2004;). Distribution and molecular analysis of mef(A)-containing elements in tetracycline-susceptible and -resistant Streptococcus pyogenes clinical isolates with efflux-mediated erythromycin resistance. J Antimicrob Chemother 54: 991–998 [CrossRef] [PubMed].
    [Google Scholar]
  4. Brenciani A. , Bacciaglia A. , Vignaroli C. , Pugnaloni A. , Varaldo P. E. , Giovanetti E. . ( 2010;). Φm46.1, the main Streptococcus pyogenes element carrying mef(A) and tet(O) genes. Antimicrob Agents Chemother 54: 221–229 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chancey S. T. , Bai X. , Kumar N. , Drabek E. F. , Daugherty S. C. , Colon T. , Ott S. , Sengamalay N. , Sadzewicz L. , other authors . ( 2015;). Transcriptional attenuation controls macrolide inducible efflux and resistance in Streptococcus pneumoniae and in other Gram-positive bacteria containing mef/mel(msr(D)) elements. PLoS One 10: e0116254 [CrossRef] [PubMed].
    [Google Scholar]
  6. Clancy J. , Petitpas J. , Dib-Hajj F. , Yuan W. , Cronan M. , Kamath A. V. , Bergeron J. , Retsema J. A. . ( 1996;). Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes . Mol Microbiol 22: 867–879 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cunningham M. W. . ( 2000;). Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13: 470–511 [CrossRef] [PubMed].
    [Google Scholar]
  8. Daly M. M. , Doktor S. , Flamm R. , Shortridge D. . ( 2004;). Characterization and prevalence of MefA, MefE, and the associated msr(D) gene in Streptococcus pneumoniae clinical isolates. J Clin Microbiol 42: 3570–3574 [CrossRef] [PubMed].
    [Google Scholar]
  9. Gay K. , Stephens D. S. . ( 2001;). Structure and dissemination of a chromosomal insertion element encoding macrolide efflux in Streptococcus pneumoniae . J Infect Dis 184: 56–65 [CrossRef] [PubMed].
    [Google Scholar]
  10. Giovanetti E. , Brenciani A. , Vecchi M. , Manzin A. , Varaldo P. E. . ( 2005;). Prophage association of mef(A) elements encoding efflux-mediated erythromycin resistance in Streptococcus pyogenes . J Antimicrob Chemother 55: 445–451 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hasegawa T. , Minami M. , Okamoto A. , Tatsuno I. , Isaka M. , Ohta M. . ( 2010a;). Characterization of a virulence-associated and cell-wall-located DNase of Streptococcus pyogenes . Microbiology 156: 184–190 [CrossRef] [PubMed].
    [Google Scholar]
  12. Hasegawa T. , Okamoto A. , Kamimura T. , Tatsuno I. , Hashikawa S. N. , Yabutani M. , Matsumoto M. , Yamada K. , Isaka M. , other authors . ( 2010b;). Detection of invasive protein profile of Streptococcus pyogenes M1 isolates from pharyngitis patients. APMIS 118: 167–178 [CrossRef] [PubMed].
    [Google Scholar]
  13. Hotomi M. , Billal D. S. , Shimada J. , Yamauchi K. , Fujihara K. , Yamanaka N. , Yamanaka N. , Surveillance Subcommittee of the Japan Society for Infectious Diseases in Otolaryngology . ( 2005;). Current status of antimicrobial susceptibility of clinical isolates of Streptococcus pyogenes in Japan: report of a countrywide surveillance study. J Infect Chemother 11: 48–51 [CrossRef] [PubMed].
    [Google Scholar]
  14. Iannelli F. , Santagati M. , Santoro F. , Oggioni M. R. , Stefani S. , Pozzi G. . ( 2014;). Nucleotide sequence of conjugative prophage Φ1207.3 (formerly Tn1207.3) carrying the mef(A)/msr(D) genes for efflux resistance to macrolides in Streptococcus pyogenes . Front Microbiol 5: 687 [PubMed].[CrossRef]
    [Google Scholar]
  15. Ichikawa M. , Minami M. , Isaka M. , Tatsuno I. , Hasegawa T. . ( 2011;). Analysis of two-component sensor proteins involved in the response to acid stimuli in Streptococcus pyogenes . Microbiology 157: 3187–3194 [CrossRef] [PubMed].
    [Google Scholar]
  16. Ikebe T. , Murai N. , Endo M. , Okuno R. , Murayama S. , Saitoh K. , Yamai S. , Suzuki R. , Isobe J. , other authors . ( 2003;). Changing prevalent T serotypes and emm genotypes of Streptococcus pyogenes isolates from streptococcal toxic shock-like syndrome (TSLS) patients in Japan. Epidemiol Infect 130: 569–572 [PubMed].
    [Google Scholar]
  17. Ikebe T. , Tominaga K. , Shima T. , Okuno R. , Kubota H. , Ogata K. , Chiba K. , Katsukawa C. , Ohya H. , other authors . ( 2015;). Increased prevalence of group A streptococcus isolates in streptococcal toxic shock syndrome cases in Japan from 2010 to 2012. Epidemiol Infect 143: 864–872 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kataja J. , Huovinen P. , Skurnik M. , Seppälä H. , the Finnish Study Group for Antimicrobial Resistance . ( 1999;). Erythromycin resistance genes in group A streptococci in Finland. Antimicrob Agents Chemother 43: 48–52 [PubMed].
    [Google Scholar]
  19. Lukomski S. , Hoe N. P. , Abdi I. , Rurangirwa J. , Kordari P. , Liu M. , Dou S. J. , Adams G. G. , Musser J. M. . ( 2000;). Nonpolar inactivation of the hypervariable streptococcal inhibitor of complement gene (sic) in serotype M1 Streptococcus pyogenes significantly decreases mouse mucosal colonization. Infect Immun 68: 535–542 [CrossRef] [PubMed].
    [Google Scholar]
  20. Okada N. , Tatsuno I. , Hanski E. , Caparon M. , Sasakawa C. . ( 1998;). Streptococcus pyogenes protein F promotes invasion of HeLa cells. Microbiology 144: 3079–3086 [CrossRef] [PubMed].
    [Google Scholar]
  21. Okada R. , Matsumoto M. , Zhang Y. , Isaka M. , Tatsuno I. , Hasegawa T. . ( 2014;). Emergence of type I restriction modification system-negative emm1 type Streptococcus pyogenes clinical isolates in Japan. APMIS 122: 914–921 [CrossRef] [PubMed].
    [Google Scholar]
  22. Orden B. , Perez-Trallero E. , Montes M. , Martínez R. . ( 1998;). Erythromycin resistance of Streptococcus pyogenes in Madrid. Pediatr Infect Dis J 17: 470–473 [CrossRef] [PubMed].
    [Google Scholar]
  23. Perez-Trallero E. , Urbieta M. , Montes M. , Ayestaran I. , Marimon J. M. . ( 1998;). Emergence of Streptococcus pyogenes strains resistant to erythromycin in Gipuzkoa, Spain. Eur J Clin Microbiol Infect Dis 17: 25–31 [CrossRef] [PubMed].
    [Google Scholar]
  24. Ross J. I. , Eady E. A. , Cove J. H. , Cunliffe W. J. , Baumberg S. , Wootton J. C. . ( 1990;). Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol 4: 1207–1214 [CrossRef] [PubMed].
    [Google Scholar]
  25. Rubio-López V. , Valdezate S. , Alvarez D. , Villalón P. , Medina M. J. , Salcedo C. , Sáez-Nieto J. A. . ( 2012;). Molecular epidemiology, antimicrobial susceptibilities and resistance mechanisms of Streptococcus pyogenes isolates resistant to erythromycin and tetracycline in Spain (1994–2006). BMC Microbiol 12: 215 [CrossRef] [PubMed].
    [Google Scholar]
  26. Santagati M. , Iannelli F. , Oggioni M. R. , Stefani S. , Pozzi G. . ( 2000;). Characterization of a genetic element carrying the macrolide efflux gene mef(A) in Streptococcus pneumoniae . Antimicrob Agents Chemother 44: 2585–2587 [CrossRef] [PubMed].
    [Google Scholar]
  27. Santagati M. , Iannelli F. , Cascone C. , Campanile F. , Oggioni M. R. , Stefani S. , Pozzi G. . ( 2003;). The novel conjugative transposon Tn1207.3 carries the macrolide efflux gene mef(A) in Streptococcus pyogenes . Microb Drug Resist 9: 243–247 [CrossRef] [PubMed].
    [Google Scholar]
  28. Seppälä H. , Skurnik M. , Soini H. , Roberts M. C. , Huovinen P. . ( 1998;). A novel erythromycin resistance methylase gene (ermTR) in Streptococcus pyogenes . Antimicrob Agents Chemother 42: 257–262 [PubMed].[CrossRef]
    [Google Scholar]
  29. Steer A. C. , Law I. , Matatolu L. , Beall B. W. , Carapetis J. R. . ( 2009;). Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect Dis 9: 611–616 [CrossRef] [PubMed].
    [Google Scholar]
  30. Sutcliffe J. , Grebe T. , Tait-Kamradt A. , Wondrack L. . ( 1996;). Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother 40: 2562–2566.
    [Google Scholar]
  31. Vitali L. A. , Di Luca M. C. , Prenna M. , Petrelli D. . ( 2015;). Correlation between genetic features of the mef(A)-msr(D) locus and erythromycin resistance in Streptococcus pyogenes . Diagn Microbiol Infect Dis (in press) [CrossRef] [Epub ahead of print].
    [Google Scholar]
  32. Wajima T. , Murayama S. Y. , Sunaoshi K. , Nakayama E. , Sunakawa K. , Ubukata K. . ( 2008;). Distribution of emm type and antibiotic susceptibility of group A streptococci causing invasive and noninvasive disease. J Med Microbiol 57: 1383–1388 [CrossRef] [PubMed].
    [Google Scholar]
  33. Weisblum B. . ( 1995;). Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 39: 577–585 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000206
Loading
/content/journal/micro/10.1099/mic.0.000206
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error