1887

Abstract

Peptide metabolism forms an important part of the metabolic network of and to acquire these peptides the pathogen possesses a number of peptide transporters. Whilst various peptide transporters known in are well studied, very little is known about the carbon starvation () genes and , which are also predicted to be involved in peptide metabolism. We investigated the role of these genes in the metabolism and pathogenesis of , and demonstrated for the first time, to the best of our knowledge, that genes actually participate in transport of specific peptides in . Furthermore, we established that the carbon starvation gene affects the expression of flagella, leading to poor adhesion of the bacterium to host cells. In contrast to the previously reported role of in virulence of in , we showed that is required for successful colonization of in the mouse gut. Thus, genes not only contribute to the metabolism of , but also influence its virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000204
2016-01-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/1/100.html?itemId=/content/journal/micro/10.1099/mic.0.000204&mimeType=html&fmt=ahah

References

  1. Abouhamad W. N., Manson M., Gibson M. M., Higgins C. F.. 1991; Peptide transport and chemotaxis in Escherichia coli and Salmonella typhimurium: characterization of the dipeptide permease (Dpp) and the dipeptide-binding protein. Mol Microbiol5:1035–1047 [CrossRef][PubMed]
    [Google Scholar]
  2. Aderem A., Underhill D. M.. 1999; Mechanisms of phagocytosis in macrophages. Annu Rev Immunol17:593–623 [CrossRef][PubMed]
    [Google Scholar]
  3. Akeda Y., Galán J. E.. 2004; Genetic analysis of the Salmonella enterica type III secretion-associated ATPase InvC defines discrete functional domains. J Bacteriol186:2402–2412 [CrossRef][PubMed]
    [Google Scholar]
  4. Alix E., Blanc-Potard A. B.. 2009; Hydrophobic peptides: novel regulators within bacterial membrane. Mol Microbiol72:5–11 [CrossRef][PubMed]
    [Google Scholar]
  5. Amann E., Ochs B., Abel K. J.. 1988; Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli . Gene69:301–315[CrossRef]
    [Google Scholar]
  6. Barthel M., Hapfelmeier S., Quintanilla-Martínez L., Kremer M., Rohde M., Hogardt M., Pfeffer K., Rüssmann H., Hardt W. D.. 2003; Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun71:2839–2858 [CrossRef][PubMed]
    [Google Scholar]
  7. Bäumler A. J., Tsolis R. M., Heffron F.. 1996; Contribution of fimbrial operons to attachment to and invasion of epithelial cell lines by Salmonella typhimurium . Infect Immun64:1862–1865[PubMed]
    [Google Scholar]
  8. Bochner B. R.. 2009; Global phenotypic characterization of bacteria. FEMS Microbiol Rev33:191–205 [CrossRef][PubMed]
    [Google Scholar]
  9. Bonifield H. R., Hughes K. T.. 2003; Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism. J Bacteriol185:3567–3574 [CrossRef][PubMed]
    [Google Scholar]
  10. Bucior I., Pielage J. F., Engel J. N.. 2012; Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathog8:e1002616 [CrossRef][PubMed]
    [Google Scholar]
  11. Chatterjee J., Laufer B., Kessler H.. 2012; Synthesis of N-methylated cyclic peptides. Nat Protoc7:432–444 [CrossRef][PubMed]
    [Google Scholar]
  12. Chilcott G. S., Hughes K. T.. 2000; Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli . Microbiol Mol Biol Rev64:694–708 [CrossRef][PubMed]
    [Google Scholar]
  13. Cundell D. R., Pearce B. J., Sandros J., Naughton A. M., Masure H. R.. 1995; Peptide permeases from Streptococcus pneumoniae affect adherence to eucaryotic cells. Infect Immun63:2493–2498[PubMed]
    [Google Scholar]
  14. Dandekar T., Astrid F., Jasmin P., Hensel M.. 2012; Salmonella enterica: a surprisingly well-adapted intracellular lifestyle. Front Microbiol3:164 [CrossRef][PubMed]
    [Google Scholar]
  15. Das P., Lahiri A., Chakravortty D.. 2009; Novel role of the nitrite transporter NirC in Salmonella pathogenesis: SPI2-dependent suppression of inducible nitric oxide synthase in activated macrophages. Microbiology155:2476–2489[CrossRef]
    [Google Scholar]
  16. Datsenko K. A., Wanner B. L.. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  17. Detmers F. J., Lanfermeijer F. C., Poolman B.. 2001; Peptides and ATP binding cassette peptide transporters. Res Microbiol152:245–258 [CrossRef][PubMed]
    [Google Scholar]
  18. Dibb-Fuller M. P., Allen-Vercoe E., Thorns C. J., Woodward M. J.. 1999; Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis . Microbiology145:1023–1031 [CrossRef][PubMed]
    [Google Scholar]
  19. Drecktrah D., Levine-Wilkinson S., Dam T., Winfree S., Knodler L. A., Schroer T. A., Steele-Mortimer O.. 2008; Dynamic behaviour of Salmonella-induced membrane tubules in epithelial cells. Traffic9:2117–2129[CrossRef]
    [Google Scholar]
  20. Dubey A. K., Baker C. S., Suzuki K., Jones A. D., Pandit P., Romeo T., Babitzke P.. 2003; CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol185:4450–4460 [CrossRef][PubMed]
    [Google Scholar]
  21. Feasey N. A., Dougan G., Kingsley R. A., Heyderman R. S., Gordon M. A.. 2012; Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. Lancet379:2489–2499 [CrossRef][PubMed]
    [Google Scholar]
  22. Finn R. D., Mistry J., Tate J., Coggill P., Heger A., Pollington J. E., Gavin O. L., Gunasekaran P., Ceric G., other authors. 2010; The Pfam protein families database. Nucleic Acids Res38:(Database)D211–D222 [CrossRef][PubMed]
    [Google Scholar]
  23. Garmory H. S., Titball R. W.. 2004; ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect Immun72:6757–6763 [CrossRef][PubMed]
    [Google Scholar]
  24. Gerlach R. G., Jäckel D., Stecher B., Wagner C., Lupas A., Hardt W. D., Hensel M.. 2007; Salmonella Pathogenicity Island 4 encodes a giant non-fimbrial adhesin and the cognate type 1 secretion system. Cell Microbiol9:1834–1850 [CrossRef][PubMed]
    [Google Scholar]
  25. Gibson M. M., Price M., Higgins C. F.. 1984; Genetic characterization and molecular cloning of the tripeptide permease (tpp) genes of Salmonella typhimurium . J Bacteriol160:122–130[PubMed]
    [Google Scholar]
  26. Girón J. A., Torres A. G., Freer E., Kaper J. B.. 2002; The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol44:361–379 [CrossRef][PubMed]
    [Google Scholar]
  27. Graziano M., St-Pierre Y., Beauchemin C., Desrosiers M., Potworowski E. F.. 1998; The fate of thymocytes labeled in vivo with CFSE. Exp Cell Res240:75–85 [CrossRef][PubMed]
    [Google Scholar]
  28. Haiko J., Westerlund-Wikström B.. 2013; The role of the bacterial flagellum in adhesion and virulence. Biology (Basel)2:1242–1267[PubMed]
    [Google Scholar]
  29. Hiles I. D., Powell L. M., Higgins C. F.. 1987; Peptide transport in Salmonella typhimurium: molecular cloning and characterization of the oligopeptide permease genes. Mol Gen Genet206:101–109 [CrossRef][PubMed]
    [Google Scholar]
  30. Inglis T. J., Robertson T., Woods D. E., Dutton N., Chang B. J.. 2003; Flagellum-mediated adhesion by Burkholderia pseudomallei precedes invasion of Acanthamoeba astronyxis . Infect Immun71:2280–2282 [CrossRef][PubMed]
    [Google Scholar]
  31. Jones B. D., Lee C. A., Falkow S.. 1992; Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect Immun60:2475–2480[PubMed]
    [Google Scholar]
  32. Karlinsey J. E., Tanaka S., Bettenworth V., Yamaguchi S., Boos W., Aizawa S. I., Hughes K. T.. 2000; Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol Microbiol37:1220–1231 [CrossRef][PubMed]
    [Google Scholar]
  33. Kim Y. M., Schmidt B. J., Kidwai A. S., Jones M. B., Deatherage Kaiser B. L., Brewer H. M., Mitchell H. D., Palsson B. O., McDermott J. E., other authors. 2013; Salmonella modulates metabolism during growth under conditions that induce expression of virulence genes. Mol Biosyst9:1522–1534 [CrossRef][PubMed]
    [Google Scholar]
  34. Kishikawa J., Ibuki T., Nakamura S., Nakanishi A., Minamino T., Miyata T., Namba K., Konno H., Ueno H., other authors. 2013; Common evolutionary origin for the rotor domain of rotary ATPases and flagellar protein export apparatus. PLoS One8:e64695 [CrossRef][PubMed]
    [Google Scholar]
  35. Kraxenberger T., Fried L., Behr S., Jung K.. 2012; First insights into the unexplored two-component system YehU/YehT in Escherichia coli . J Bacteriol194:4272–4284 [CrossRef][PubMed]
    [Google Scholar]
  36. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L.. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol305:567–580 [CrossRef][PubMed]
    [Google Scholar]
  37. Lee E. J., Pontes M. H., Groisman E. A.. 2013; A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium's own F1F0 ATP synthase. Cell154:146–156 [CrossRef][PubMed]
    [Google Scholar]
  38. McNab R., Jenkinson H. F.. 1998; Altered adherence properties of a Streptococcus gordonii hppA (oligopeptide permease) mutant result from transcriptional effects on cshA adhesin gene expression. Microbiology144:127–136 [CrossRef][PubMed]
    [Google Scholar]
  39. Moraes P. M., Seyffert N., Silva W. M., Castro T. L., Silva R. F., Lima D. D., Hirata R. Jr, Silva A., Miyoshi A., Azevedo V.. 2014; Characterization of the Opp peptide transporter of Corynebacterium pseudotuberculosis and its role in virulence and pathogenicity. BioMed Res Int2014:489–782 [CrossRef][PubMed]
    [Google Scholar]
  40. Olson E. R., Dunyak D. S., Jurss L. M., Poorman R. A.. 1991; Identification and characterization of dppA, an Escherichia coli gene encoding a periplasmic dipeptide transport protein. J Bacteriol173:234–244[PubMed]
    [Google Scholar]
  41. Parra-Lopez C., Baer M. T., Groisman E. A.. 1993; Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium . EMBO J12:4053–4062[PubMed]
    [Google Scholar]
  42. Peterson M. D., Mooseker M. S.. 1992; Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci102:581–600[PubMed]
    [Google Scholar]
  43. Podbielski A., Leonard B. A.. 1998; The group A streptococcal dipeptide permease (Dpp) is involved in the uptake of essential amino acids and affects the expression of cysteine protease. Mol Microbiol28:1323–1334 [CrossRef][PubMed]
    [Google Scholar]
  44. Pontes M. H., Lee E. J., Choi J., Groisman E. A.. 2015; Salmonella promotes virulence by repressing cellulose production. Proc Natl Acad Sci U S A112:5183–5188 [CrossRef][PubMed]
    [Google Scholar]
  45. Rabsch W., Andrews H. L., Kingsley R. A., Prager R., Tschäpe H., Adams L. G., Bäumler A. J.. 2002; Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect Immun70:2249–2255 [CrossRef][PubMed]
    [Google Scholar]
  46. Raffatellu M., Wilson R. P., Chessa D., Andrews-Polymenis H., Tran Q. T., Lawhon S., Khare S., Adams L. G., Bäumler A. J.. 2005; SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells. Infect Immun73:146–154 [CrossRef][PubMed]
    [Google Scholar]
  47. Samen U., Gottschalk B., Eikmanns B. J., Reinscheid D. J.. 2004; Relevance of peptide uptake systems to the physiology and virulence of Streptococcus agalactiae . J Bacteriol186:1398–1408 [CrossRef][PubMed]
    [Google Scholar]
  48. Schmitt C. K., Ikeda J. S., Darnell S. C., Watson P. R., Bispham J., Wallis T. S., Weinstein D. L., Metcalf E. S., O'Brien A. D.. 2001; Absence of all components of the flagellar export and synthesis machinery differentially alters virulence of Salmonella enterica serovar Typhimurium in models of typhoid fever, survival in macrophages, tissue culture invasiveness, and calf enterocolitis. Infect Immun69:5619–5625 [CrossRef][PubMed]
    [Google Scholar]
  49. Schultz J. E., Matin A.. 1991; Molecular and functional characterization of a carbon starvation gene of Escherichia coli . J Mol Biol218:129–140 [CrossRef][PubMed]
    [Google Scholar]
  50. Schultz J. E., Latter G. I., Matin A.. 1988; Differential regulation by cyclic AMP of starvation protein synthesis in Escherichia coli . J Bacteriol170:3903–3909[PubMed]
    [Google Scholar]
  51. Slamti L., Lereclus D.. 2002; A cell-cell signaling peptide activates the PlcR virulence regulon in bacteria of the Bacillus cereus group. EMBO J21:4550–4559 [CrossRef][PubMed]
    [Google Scholar]
  52. Spector M. P.. 1998; The starvation-stress response (SSR) of Salmonella . Adv Microb Physiol40:233–279 [CrossRef][PubMed]
    [Google Scholar]
  53. Stecher B., Hapfelmeier S., Müller C., Kremer M., Stallmach T., Hardt W. D.. 2004; Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun72:4138–4150 [CrossRef][PubMed]
    [Google Scholar]
  54. Steeb B., Claudi B., Burton N. A., Tienz P., Schmidt A., Farhan H., Mazé A., Bumann D.. 2013; Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog9:e1003301 [CrossRef][PubMed]
    [Google Scholar]
  55. Tasteyre A., Barc M. C., Collignon A., Boureau H., Karjalainen T.. 2001; Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. Infect Immun69:7937–7940 [CrossRef][PubMed]
    [Google Scholar]
  56. Tenor J. L., McCormick B. A., Ausubel F. M., Aballay A.. 2004; Caenorhabditis elegans-based screen identifies Salmonella virulence factors required for conserved host-pathogen interactions. Curr Biol14:1018–1024 [CrossRef][PubMed]
    [Google Scholar]
  57. Thompson J. A., Liu M., Helaine S., Holden D. W.. 2011; Contribution of the PhoP/Q regulon to survival and replication of Salmonella enterica serovar Typhimurium in macrophages. Microbiology157:2084–2093 [CrossRef][PubMed]
    [Google Scholar]
  58. Uzzau S., Brown D. J., Wallis T., Rubino S., Leori G., Bernard S., Casadesús J., Platt D. J., Olsen J. E.. 2000; Host adapted serotypes of Salmonella enterica . Epidemiol Infect125:229–255 [CrossRef][PubMed]
    [Google Scholar]
  59. Vorwerk H., Mohr J., Huber C., Wensel O., Schmidt-Hohagen K., Gripp E., Josenhans C., Schomburg D., Eisenreich W., Hofreuter D.. 2014; Utilization of host-derived cysteine-containing peptides overcomes the restricted sulphur metabolism of Campylobacter jejuni . Mol Microbiol93:1224–1245[PubMed]
    [Google Scholar]
  60. Weening E. H., Barker J. D., Laarakker M. C., Humphries A. D., Tsolis R. M., Bäumler A. J.. 2005; The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect Immun73:3358–3366 [CrossRef][PubMed]
    [Google Scholar]
  61. Wong V. K., Pickard D. J., Barquist L., Sivaraman K., Page A. J., Hart P. J., Arends M. J., Holt K. E., Kane L., other authors. 2013; Characterization of the yehUT two-component regulatory system of Salmonella enterica Serovar Typhi and Typhimurium. PLoS One8:e84567 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000204
Loading
/content/journal/micro/10.1099/mic.0.000204
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error