1887

Abstract

Platelets have been reported to become activated in response to bacteria and this is proposed to contribute to the acute response to bacterial infection. In the present study, we investigated platelet aggregation in response to group G streptococci (GGS) in healthy human donors and in a mouse model of streptococcal sepsis. Platelet aggregation by GGS was dependent on the bacterial surface protein FOG and engagement of the platelet fibrinogen receptor; however, it was independent of IgG and the platelet Fc receptor. Platelets exerted no antibacterial effects on the bacteria, and aggregates formed were markedly unstable, allowing bacteria to rapidly return to the plasma and grow post-aggregation. Thrombocytopenia and platelet activation occurred during invasive infection with GGS, and platelets were demonstrated to contribute to bacterial dissemination during infection. These findings reveal an important role for bacteria–platelet interactions during the pathogenesis of streptococcal infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000203
2016-01-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/1/117.html?itemId=/content/journal/micro/10.1099/mic.0.000203&mimeType=html&fmt=ahah

References

  1. Akinosoglou K., Alexopoulos D.. 2014; Use of antiplatelet agents in sepsis: a glimpse into the future. Thromb Res133:131–138 [CrossRef][PubMed]
    [Google Scholar]
  2. Arman M., Krauel K.. 2015; Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis. J Thromb Haemost13:893–908 [CrossRef][PubMed]
    [Google Scholar]
  3. Bekker V., Bijlsma M. W., van de Beek D., Kuijpers T. W., van der Ende A.. 2014; Incidence of invasive group B streptococcal disease and pathogen genotype distribution in newborn babies in the Netherlands over 25 years: a nationwide surveillance study. Lancet Infect Dis14:1083–1089 [CrossRef][PubMed]
    [Google Scholar]
  4. Bergmann R., Nitsche-Schmitz D. P.. 2015; Small plasmids in Streptococcus dysgalactiae subsp., equisimilis isolated from human infections in southern India and sequence analysis of two novel plasmids. Int J Med Microbiol305:365–369 [CrossRef][PubMed]
    [Google Scholar]
  5. Björck L., Kronvall G.. 1984; Purification and some properties of streptococcal protein G, a novel IgG-binding reagent. J Immunol133:969–974[PubMed]
    [Google Scholar]
  6. Brandt C. M., Spellerberg B.. 2009; Human infections due to Streptococcus dysgalactiae subspecies equisimilis . Clin Infect Dis49:766–772 [CrossRef][PubMed]
    [Google Scholar]
  7. Carapetis J. R., Steer A. C., Mulholland E. K., Weber M.. 2005; The global burden of group A streptococcal diseases. Lancet Infect Dis5:685–694 [CrossRef][PubMed]
    [Google Scholar]
  8. Carlsson F., Sandin C., Lindahl G.. 2005; Human fibrinogen bound to Streptococcus pyogenes M protein inhibits complement deposition via the classical pathway. Mol Microbiol56:28–39 [CrossRef][PubMed]
    [Google Scholar]
  9. Coller B. S.. 1995; Blockade of platelet GPIIb/IIIa receptors as an antithrombotic strategy. Circulation92:2373–2380 [CrossRef][PubMed]
    [Google Scholar]
  10. Cunningham M. W.. 2000; Pathogenesis of group A streptococcal infections. Clin Microbiol Rev13:470–511 [CrossRef][PubMed]
    [Google Scholar]
  11. de Stoppelaar S. F., van't Veer C., Claushuis T.A.M., Albersen B.J.A., Roelofs J.J.T.H., van der Poll T.. 2014; Thrombocytopenia impairs host defense in Gram-negative pneumonia-derived sepsis in mice. Blood124:3781–3790 [CrossRef][PubMed]
    [Google Scholar]
  12. Egesten A., Frick I. M., Mörgelin M., Olin A. I., Björck L.. 2011; Binding of albumin promotes bacterial survival at the epithelial surface. J Biol Chem286:2469–2476 [CrossRef][PubMed]
    [Google Scholar]
  13. Heath P. T., Jardine L. A.. 2014; Neonatal infections: group B streptococcus. BMJ Clinical Evidence Systematic Review323http://clinicalevidence.bmj.com/x/systematic-review/0323/overview.html /
    [Google Scholar]
  14. Hui P., Cook D. J., Lim W., Fraser G. A., Arnold D. M.. 2011; The frequency and clinical significance of thrombocytopenia complicating critical illness: a systematic review. Chest139:271–278 [CrossRef][PubMed]
    [Google Scholar]
  15. Johansson H. M., Mörgelin M., Frick I. M.. 2004; Protein FOG – a streptococcal inhibitor of neutrophil function. Microbiology150:4211–4221 [CrossRef][PubMed]
    [Google Scholar]
  16. Johansson B. P., Shannon O., Björck L.. 2008; IdeS: a bacterial proteolytic enzyme with therapeutic potential. PLoS One3:e1692[CrossRef]
    [Google Scholar]
  17. Johansson D., Shannon O., Rasmussen M.. 2011; Platelet and neutrophil responses to Gram positive pathogens in patients with bacteremic infection. PLoS One6:e26928 [CrossRef][PubMed]
    [Google Scholar]
  18. Kahn F., Hmiscey S., Shannon O.. 2013; Platelets promote bacterial dissemination in a mouse model of streptococcal sepsis. Microbes Infect15:669–676 [CrossRef][PubMed]
    [Google Scholar]
  19. Kato Y., Hori S., Fujita N., Tsuruo T.. 1998; A novel anti-platelet monoclonal antibody induces mouse platelet aggregation through an Fc receptor-independent mechanism. Biochem Biophys Res Commun242:250–255 [CrossRef][PubMed]
    [Google Scholar]
  20. Kerrigan S. W., Cox D.. 2010; Platelet-bacterial interactions. Cell Mol Life Sci67:513–523 [CrossRef][PubMed]
    [Google Scholar]
  21. Lancefield R. C.. 1933; A serological differentiation of human and other groups of haemolytic streptococci. J Exp Med57:571–595 [CrossRef][PubMed]
    [Google Scholar]
  22. Levi M.. 2005; Platelets in sepsis. Hematology10:(Suppl. 1)129–131 [CrossRef][PubMed]
    [Google Scholar]
  23. McKenzie S. E., Taylor S. M., Malladi P., Yuhan H., Cassel D. L., Chien P., Schwartz E., Schreiber A. D., Surrey S., Reilly M. P.. 1999; The role of the human Fc receptor FcγRIIA in the immune clearance of platelets: a transgenic mouse model. J Immunol162:4311–4318[PubMed]
    [Google Scholar]
  24. Nitsche-Schmitz D. P., Johansson H. M., Sastalla I., Reissmann S., Frick I. M., Chhatwal G. S.. 2007; Group G streptococcal IgG binding molecules FOG and protein G have different impacts on opsonization by C1q. J Biol Chem282:17530–17536 [CrossRef][PubMed]
    [Google Scholar]
  25. Otto G. P., Sossdorf M., Boettel J., Kabisch B., Breuel H., Winning J., Lösche W.. 2013; Effects of low-dose acetylsalicylic acid and atherosclerotic vascular diseases on the outcome in patients with severe sepsis or septic shock. Platelets24:480–485 [CrossRef][PubMed]
    [Google Scholar]
  26. Semple J. W., Italiano J. E. Jr, Freedman J.. 2011; Platelets and the immune continuum. Nat Rev Immunol11:264–274 [CrossRef][PubMed]
    [Google Scholar]
  27. Sharron M., Hoptay C. E., Wiles A. A., Garvin L. M., Geha M., Benton A. S., Nagaraju K., Freishtat R. J.. 2012; Platelets induce apoptosis during sepsis in a contact-dependent manner that is inhibited by GPIIb/IIIa blockade. PLoS One7:e41549 [CrossRef][PubMed]
    [Google Scholar]
  28. Svensson L., Baumgarten M., Mörgelin M., Shannon O.. 2014; Platelet activation by Streptococcus pyogenes leads to entrapment in platelet aggregates from which bacteria subsequently escape. Infect Immun82:4307–4313[CrossRef]
    [Google Scholar]
  29. Takahashi T., Sunaoshi K., Sunakawa K., Fujishima S., Watanabe H., Ubukata K., the Invasive Streptococcal Disease Working Group. 2010; Clinical aspects of invasive infections with Streptococcus dysgalactiae ssp., equisimilis in Japan: differences with respect to Streptococcus pyogenes and Streptococcus agalactiae infections. Clin Microbiol Infect16:1097–1103 [CrossRef][PubMed]
    [Google Scholar]
  30. Vandijck D. M., Blot S. I., De Waele J. J., Hoste E. A., Vandewoude K. H., Decruyenaere J. M.. 2010; Thrombocytopenia and outcome in critically ill patients with bloodstream infection. Heart Lung39:21–26 [CrossRef][PubMed]
    [Google Scholar]
  31. Watanabe S., Kirikae T., Miyoshi-Akiyama T.. 2013; Complete genome sequence of Streptococcus dysgalactiae subsp equisimilis 167 carrying Lancefield group C antigen and comparative genomics of S. dysgalactiae subsp. equisimilis strains. Genome Biol Evol5:1644–1651 [CrossRef][PubMed]
    [Google Scholar]
  32. Winning J., Reichel J., Eisenhut Y., Hamacher J., Kohl M., Deigner H. P., Claus R. A., Bauer M., Lösche W.. 2009; Anti-platelet drugs and outcome in severe infection: clinical impact and underlying mechanisms. Platelets20:50–57 [CrossRef][PubMed]
    [Google Scholar]
  33. Wollein Waldetoft K., Svensson L., Mörgelin M., Olin A. I., Nitsche-Schmitz D. P., Björck L., Frick I. M.. 2012; Streptococcal surface proteins activate the contact system and control its antibacterial activity. J Biol Chem287:25010–25018 [CrossRef][PubMed]
    [Google Scholar]
  34. Xiang B., Zhang G., Guo L., Li X. A., Morris A. J., Daugherty A., Whiteheart S. W., Smyth S. S., Li Z.. 2013; Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway. Nat Commun4:2657 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000203
Loading
/content/journal/micro/10.1099/mic.0.000203
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error