1887

Abstract

Initially, transcription in appeared to be complicated, yet it was eventually simplified into a model where integration host factor activates a single − 35/ − 10 promoter. However, with the advent of high-throughput RNA sequencing, numerous small specific RNAs (sense as well as antisense) have been identified at the locus as well as at various loci. Using a combination of transcription, site-directed mutagenesis, Northern analysis and quantitative reverse transcriptase PCR (qRT-PCR) analysis, we have identified three additional non-canonical promoter elements within the gene; two are located within the midgene region (one sense and one antisense), with the third, an antisense promoter, located immediately downstream of the ORF. Using strand-specific qRT-PCR analysis, an inverse correlation exists between the level of antisense expression and the amount of sense message. By their nature, promoter sequences tend to be AT-rich. In , the small DNA-binding protein H-NS binds to AT-rich sequences and inhibits intragenic transcription. In mutants, antisense transcription was increased twofold, with a concomitant decrease in sense transcript levels. However, most noticeably in these mutants, the absence of H-NS protein caused / recombination to increase dramatically when compared with WT values. Consequently, H-NS protein suppresses intragenic transcription as well as antigenic variation through the / recombination system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000199
2016-01-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/1/177.html?itemId=/content/journal/micro/10.1099/mic.0.000199&mimeType=html&fmt=ahah

References

  1. Barten R., Meyer T. F.. 1997; Neisseria gonorrhoeae reverse transcriptase activity does not mediate pilin gene conversion. Mol Microbiol24:665–670[CrossRef]
    [Google Scholar]
  2. Bergström S., Robbins K., Koomey J. M., Swanson J.. 1986; Piliation control mechanisms in Neisseria gonorrhoeae . Proc Natl Acad Sci U S A83:3890–3894 [CrossRef][PubMed]
    [Google Scholar]
  3. Cahoon L. A., Seifert H. S.. 2013; Transcription of a cis-acting, noncoding, small RNA is required for pilin antigenic variation in Neisseria gonorrhoeae . PLoS Pathog9:e1003074 [CrossRef][PubMed]
    [Google Scholar]
  4. Callen B. P., Shearwin K. E., Egan J. B.. 2004; Transcriptional interference between convergent promoters caused by elongation over the promoter. Mol Cell14:647–656 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen L. H., Emory S. A., Bricker A. L., Bouvet P., Belasco J. G.. 1991; Structure and function of a bacterial mRNA stabilizer: analysis of the 5′ untranslated region of ompA mRNA. J Bacteriol173:4578–4586[PubMed]
    [Google Scholar]
  6. Dietrich M., Munke R., Gottschald M., Ziska E., Boettcher J. P., Mollenkopf H., Friedrich A.. 2009; The effect of hfq on global gene expression and virulence in Neisseria gonorrhoeae . FEBS J276:5507–5520 [CrossRef][PubMed]
    [Google Scholar]
  7. Dillon S. C., Dorman C. J.. 2010; Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol8:185–195 [CrossRef][PubMed]
    [Google Scholar]
  8. Fyfe J.A.M., Davies J. K.. 1998; An AT-rich tract containing an integration host factor-binding domain and two UP-like elements enhances transcription from the pilEp1 promoter of Neisseria gonorrhoeae . J Bacteriol180:2152–2159[PubMed]
    [Google Scholar]
  9. Fyfe J.A.M., Carrick C. S., Davies J. K.. 1995; ThepilE gene of Neisseria gonorrhoeae MS11 is transcribed from a σ70 promoter during growth in vitro . J Bacteriol177:3781–3787[PubMed]
    [Google Scholar]
  10. Haddad F., Qin A. X., Giger J. M., Guo H., Baldwin K. M.. 2007; Potential pitfalls in the accuracy of analysis of natural sense-antisense RNA pairs by reverse transcription-PCR. BMC Biotechnol7:21 [CrossRef][PubMed]
    [Google Scholar]
  11. Hagblom P., Segal E., Billyard E., So M.. 1985; Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae . Nature315:156–158 [CrossRef][PubMed]
    [Google Scholar]
  12. Hill S. A., Davies J. K.. 2009; Pilin gene variation in Neisseria gonorrhoeae: reassessing the old paradigms. FEMS Microbiol Rev33:521–530 [CrossRef][PubMed]
    [Google Scholar]
  13. Hill S. A., Morrison S. G., Swanson J.. 1990; The role of direct oligonucleotide repeats in gonococcal pilin gene variation. Mol Microbiol4:1341–1352 [CrossRef][PubMed]
    [Google Scholar]
  14. Hill S. A., Samuels D. S., Carlson J. H., Wilson J., Hogan D., Lubke L., Belland R. J.. 1997; Integration host factor is a transcriptional cofactor of pilE in Neisseria gonorrhoeae . Mol Microbiol23:649–656 [CrossRef][PubMed]
    [Google Scholar]
  15. Hill S. A., Woodward T., Reger A., Baker R., Dinse T.. 2007; Role for the RecBCD recombination pathway for pilE gene variation in repair-proficient Neisseria gonorrhoeae . J Bacteriol189:7983–7990 [CrossRef][PubMed]
    [Google Scholar]
  16. Ieva R., Alaimo C., Delany I., Spohn G., Rappuoli R., Scarlato V.. 2005; CrgA is an inducible LysR-type regulator of Neisseria meningitidis, acting both as a repressor and as an activator of gene transcription. J Bacteriol187:3421–3430 [CrossRef][PubMed]
    [Google Scholar]
  17. Matthias K. A., Rest R. F.. 2014; Control of pili and sialyltransferase expression in Neisseria gonorrhoeae is mediated by the transcriptional regulator CrgA. Mol Microbiol91:1120–1135 [CrossRef][PubMed]
    [Google Scholar]
  18. Navarre W. W., Porwollik S., Wang Y., McClelland M., Rosen H., Libby S. J., Fang F. C.. 2006; Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella . Science313:236–238 [CrossRef][PubMed]
    [Google Scholar]
  19. Sharadamma N., Harshavardhana Y., Singh P., Muniyappa K.. 2010; Mycobacterium tuberculosis nucleoid-associated DNA-binding protein H-NS binds with high-affinity to the Holliday junction and inhibits strand exchange promoted by RecA protein. Nucleic Acids Res38:3555–3569 [CrossRef][PubMed]
    [Google Scholar]
  20. Shearwin K. E., Callen B. P., Egan J. B.. 2005; Transcriptional interference – a crash course. Trends Genet21:339–345 [CrossRef][PubMed]
    [Google Scholar]
  21. Shiraishi K., Ogata Y., Hanada K., Kano Y., Ikeda H.. 2007; Roles of the DNA binding proteins H-NS and StpA in homologous recombination and repair of bleomycin-induced damage in Escherichia coli . Genes Genet Syst82:433–439 [CrossRef][PubMed]
    [Google Scholar]
  22. Singh S. S., Grainger D. C.. 2013; H-NS can facilitate specific DNA-binding by RNA polymerase in AT-rich gene regulatory regions. PLoS Genet9:e1003589 [CrossRef][PubMed]
    [Google Scholar]
  23. Singh S. S., Singh N., Bonocora R. P., Fitzgerald D. M., Wade J. T., Grainger D. C.. 2014; Widespread suppression of intragenic transcription initiation by H-NS. Genes Dev28:214–219 [CrossRef][PubMed]
    [Google Scholar]
  24. Sorek R., Cossart P.. 2010; Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet11:9–16 [CrossRef][PubMed]
    [Google Scholar]
  25. Swanson J.. 1982; Colony opacity and protein II compositions of gonococci. Infect Immun37:359–368[PubMed]
    [Google Scholar]
  26. Swanson J., Barrera O.. 1983; Gonococcal pilus subunit size heterogeneity correlates with transitions in colony piliation phenotype, not with changes in colony opacity. J Exp Med158:1459–1472 [CrossRef][PubMed]
    [Google Scholar]
  27. Tan F.Y.Y., Wörmann M. E., Loh E., Tang C. M., Exley R. M.. 2015; Characterization of a novel antisense RNA in the major pilin locus of Neisseria meningitidis influencing antigenic variation. J Bacteriol197:1757–1768 [CrossRef][PubMed]
    [Google Scholar]
  28. Tuiskunen A., Leparc-Goffart I., Boubis L., Monteil V., Klingström J., Tolou H. J., Lundkvist A., Plumet S.. 2010; Self-priming of reverse transcriptase impairs strand-specific detection of dengue virus RNA. J Gen Virol91:1019–1027 [CrossRef][PubMed]
    [Google Scholar]
  29. Wachter J., Hill S. A.. 2015; Small transcriptome analysis indicates that the enzyme RppH influences both the quality and quantity of sRNAs in Neisseria gonorrhoeae . FEMS Microbiol Lett362:1–7 [CrossRef][PubMed]
    [Google Scholar]
  30. Wachter J., Masters T. L., Wachter S., Mason J., Hill S. A.. 2015; pilS loci in Neisseria gonorrhoeae are transcriptionally active. Microbiology161:1124–1135 [CrossRef][PubMed]
    [Google Scholar]
  31. Wade J. T., Grainger D. C.. 2014; Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. Nat Rev Microbiol12:647–653 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000199
Loading
/content/journal/micro/10.1099/mic.0.000199
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error