1887

Abstract

Secretion systems are key virulence factors, modulating interactions between pathogens and the host's immune response. Six potential secretion systems (types 1–6; T1SS–T6SS) have been discussed in classical bordetellae, respiratory commensals/pathogens of mammals. The prototypical strain RB50 genome seems to contain all six systems, whilst two human-restricted subspecies, and , have lost different subsets of these. This implicates secretion systems in the divergent evolutionary histories that have led to their success in different niches. Based on our previous work demonstrating that changes in secretion systems are associated with virulence characteristics, we hypothesized there would be substantial divergence of the loci encoding each amongst sequenced strains. Here, we describe extensive differences in secretion system loci; 10 of the 11 sequenced strains had lost subsets of genes or one entire secretion system locus. These loci contained genes homologous to those present in the respective loci in distantly related organisms, as well as genes unique to bordetellae, suggesting novel and/or auxiliary functions. The high degree of conservation of the T3SS locus, a complex machine with interdependent parts that must be conserved, stands in dramatic contrast to repeated loss of T5aSS ‘autotransporters’, which function as an autonomous unit. This comparative analysis provided insights into critical aspects of each pathogen's adaptation to its different niche, and the relative contributions of recombination, mutation and horizontal gene transfer. In addition, the relative conservation of various secretion systems is an important consideration in the ongoing search for more highly conserved protective antigens for the next generation of pertussis vaccines.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000197
2015-12-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2328.html?itemId=/content/journal/micro/10.1099/mic.0.000197&mimeType=html&fmt=ahah

References

  1. Abby S. S. , Rocha E. P. C. . ( 2012;). The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet 8: e1002983 [CrossRef] [PubMed].
    [Google Scholar]
  2. Ahuja U. , Liu M. , Tomida S. , Park J. , Souda P. , Whitelegge J. , Li H. , Harvill E. T. , Parkhill J. , Miller J. F. . ( 2012;). Phenotypic and genomic analysis of hypervirulent human-associated Bordetella bronchiseptica . BMC Microbiol 12: 167 [CrossRef] [PubMed].
    [Google Scholar]
  3. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bernstein H. D. . ( 2007;). Are bacterial ‘autotransporters’ really transporters?. Trends Microbiol 15: 441–447 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bingle L. E. , Bailey C. M. , Pallen M. J. . ( 2008;). Type VI secretion: a beginner's guide. Curr Opin Microbiol 11: 3–8 [CrossRef] [PubMed].
    [Google Scholar]
  6. Buboltz A. M. , Nicholson T. L. , Parette M. R. , Hester S. E. , Parkhill J. , Harvill E. T. . ( 2008;). Replacement of adenylate cyclase toxin in a lineage of Bordetella bronchiseptica . J Bacteriol 190: 5502–5511 [CrossRef] [PubMed].
    [Google Scholar]
  7. Buboltz A. M. , Nicholson T. L. , Weyrich L. S. , Harvill E. T. . ( 2009;). Role of the type III secretion system in a hypervirulent lineage of Bordetella bronchiseptica . Infect Immun 77: 3969–3977 [CrossRef] [PubMed].
    [Google Scholar]
  8. Cambronne E. D. , Roy C. R. . ( 2006;). Recognition and delivery of effector proteins into eukaryotic cells by bacterial secretion systems. Traffic 7: 929–939 [CrossRef] [PubMed].
    [Google Scholar]
  9. Carver T. J. , Rutherford K. M. , Berriman M. , Rajandream M.-A. , Barrell B. G. , Parkhill J. . ( 2005;). ACT: the Artemis Comparison Tool. Bioinformatics 21: 3422–3423 [CrossRef] [PubMed].
    [Google Scholar]
  10. Cascales E. . ( 2008;). The type VI secretion toolkit. EMBO Rep 9: 735–741 [CrossRef] [PubMed].
    [Google Scholar]
  11. CDC ( 2015a;). Pertussis: outbreaks.http://www.cdc.gov/pertussis/outbreaks/trends.html..
    [Google Scholar]
  12. CDC ( 2015b;). Pertussis in Other Countries. http://www.cdc.gov/pertussis/countries.html..
    [Google Scholar]
  13. Christie P. J. , Cascales E. . ( 2005;). Structural and dynamic properties of bacterial type IV secretion systems. Mol Membr Biol 22: 51–61 [CrossRef] [PubMed].
    [Google Scholar]
  14. Christie P. J. , Atmakuri K. , Krishnamoorthy V. , Jakubowski S. , Cascales E. . ( 2005;). Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59: 451–485 [CrossRef] [PubMed].
    [Google Scholar]
  15. Christie P. J. , Whitaker N. , González-Rivera C. . ( 2014;). Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta 1843: 1578–1591 [CrossRef] [PubMed].
    [Google Scholar]
  16. Cianciotto N. P. . ( 2005;). Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13: 581–588 [CrossRef] [PubMed].
    [Google Scholar]
  17. Cornelis G. R. . ( 2006;). The type III secretion injectisome. Nat Rev Microbiol 4: 811–825 [CrossRef] [PubMed].
    [Google Scholar]
  18. Costa T. R. D. , Felisberto-Rodrigues C. , Meir A. , Prevost M. S. , Redzej A. , Trokter M. , Waksman G. . ( 2015;). Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13: 343–359 [CrossRef] [PubMed].
    [Google Scholar]
  19. Dautin N. , Bernstein H. D. . ( 2007;). Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol 61: 89–112 [CrossRef] [PubMed].
    [Google Scholar]
  20. Delepelaire P. . ( 2004;). Type I secretion in gram-negative bacteria. Biochim Biophys Acta 1694: 149–161 [CrossRef] [PubMed].
    [Google Scholar]
  21. Diavatopoulos D. A. , Cummings C. A. , Schouls L. M. , Brinig M. M. , Relman D. A. , Mooi F. R. . ( 2005;). Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica . PLoS Pathog 1: e45 [CrossRef] [PubMed].
    [Google Scholar]
  22. Diepold A. , Wagner S. . ( 2014;). Assembly of the bacterial type III secretion machinery. FEMS Microbiol Rev 38: 802–822 [CrossRef] [PubMed].
    [Google Scholar]
  23. Fauvart M. , Michiels J. . ( 2008;). Rhizobial secreted proteins as determinants of host specificity in the rhizobium–legume symbiosis. FEMS Microbiol Lett 285: 1–9 [CrossRef] [PubMed].
    [Google Scholar]
  24. Fennelly N. K. , Sisti F. , Higgins S. C. , Ross P. J. , van der Heide H. , Mooi F. R. , Boyd A. , Mills K. H. . ( 2008;). Bordetella pertussis expresses a functional type III secretion system that subverts protective innate and adaptive immune responses. Infection and Immunity 76: 1257–1266 [CrossRef] [PubMed].
    [Google Scholar]
  25. Filloux A. . ( 2004;). The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 1694: 163–179 [CrossRef] [PubMed].
    [Google Scholar]
  26. Filloux A. , Hachani A. , Bleves S. . ( 2008;). The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154: 1570–1583 [CrossRef] [PubMed].
    [Google Scholar]
  27. Fronzes R. , Schäfer E. , Wang L. , Saibil H. R. , Orlova E. V. , Waksman G. . ( 2009;). Structure of a type IV secretion system core complex. Science 323: 266–268 [CrossRef] [PubMed].
    [Google Scholar]
  28. Gawarzewski I. , Smits S. H. J. , Schmitt L. , Jose J. . ( 2013;). Structural comparison of the transport units of type V secretion systems. Biol Chem 394: 1385–1398 [CrossRef] [PubMed].
    [Google Scholar]
  29. Grant S. R. , Fisher E. J. , Chang J. H. , Mole B. M. , Dangl J. L. . ( 2006;). Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60: 425–449 [CrossRef] [PubMed].
    [Google Scholar]
  30. Heininger U. , Cotter P. A. , Fescemyer H. W. , Martinez de Tejada G. , Yuk M. H. , Miller J. F. , Harvill E. T. . ( 2002;). Comparative phenotypic analysis of the Bordetella parapertussis isolate chosen for genomic sequencing. Infect Immun 70: 3777–3784 [CrossRef] [PubMed].
    [Google Scholar]
  31. Henderson I. R. , Navarro-Garcia F. , Desvaux M. , Fernandez R. C. , Ala'Aldeen D. . ( 2004;). Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68: 692–744 [CrossRef] [PubMed].
    [Google Scholar]
  32. Holland I. B. , Schmitt L. , Young J. . ( 2005;). Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway. Mol Membr Biol 22: 29–39 [CrossRef] [PubMed].
    [Google Scholar]
  33. Hood R. D. , Singh P. , Hsu F. , Güvener T. , Carl M. A. , Trinidad R. R. S. , Silverman J. M. , Ohlson B. B. , Hicks K. G. , other authors . ( 2010;). A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7: 25–37 [CrossRef] [PubMed].
    [Google Scholar]
  34. Jacob-Dubuisson F. , Fernandez R. , Coutte L. . ( 2004;). Protein secretion through autotransporter and two-partner pathways. Biochim Biophys Acta 1694: 235–257 [CrossRef] [PubMed].
    [Google Scholar]
  35. Julio S. M. , Cotter P. A. . ( 2005;). Characterization of the filamentous hemagglutinin-like protein FhaS in Bordetella bronchiseptica . Infect Immun 73: 4960–4971 [CrossRef] [PubMed].
    [Google Scholar]
  36. Korotkov K. V. , Sandkvist M. , Hol W. G. J. . ( 2012;). The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 10: 336–351 [PubMed].
    [Google Scholar]
  37. Laoide B. M. , Ullmann A. . ( 1990;). Virulence dependent and independent regulation of the Bordetella pertussis cya operon. EMBO J 9: 999–1005 [PubMed].
    [Google Scholar]
  38. Le Blastier S. , Hamels A. , Cabeen M. , Schille L. , Tilquin F. , Dieu M. , Raes M. , Matroule J.-Y. . ( 2010;). Phosphate starvation triggers production and secretion of an extracellular lipoprotein in Caulobacter crescentus . PLoS One 5: e14198 [CrossRef] [PubMed].
    [Google Scholar]
  39. Leo J. C. , Grin I. , Linke D. . ( 2012;). Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos Trans R Soc Lond B Biol Sci 367: 1088–1101 [CrossRef] [PubMed].
    [Google Scholar]
  40. Locht C. , Coutte L. , Mielcarek N. . ( 2011;). The ins and outs of pertussis toxin. FEBS J 278: 4668–4682 [CrossRef] [PubMed].
    [Google Scholar]
  41. Mahmoud K. K. , Koval S. F. . ( 2010;). Characterization of type IV pili in the life cycle of the predator bacterium Bdellovibrio . Microbiology 156: 1040–1051 [CrossRef] [PubMed].
    [Google Scholar]
  42. Marr N. , Oliver D. C. , Laurent V. , Poolman J. , Denoël P. , Fernandez R. C. . ( 2008;). Protective activity of the Bordetella pertussis BrkA autotransporter in the murine lung colonization model. Vaccine 26: 4306–4311 [CrossRef] [PubMed].
    [Google Scholar]
  43. Marshall N. C. , Finlay B. B. . ( 2014;). Targeting the type III secretion system to treat bacterial infections. Expert Opin Ther Targets 18: 137–152 [PubMed].[CrossRef]
    [Google Scholar]
  44. Martin D. P. , Lemey P. , Lott M. , Moulton V. , Posada D. , Lefeuvre P. . ( 2010;). rdp3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26: 2462–2463 [CrossRef] [PubMed].
    [Google Scholar]
  45. Mattoo S. , Cherry J. D. . ( 2005;). Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18: 326–382 [CrossRef] [PubMed].
    [Google Scholar]
  46. Mota L. J. , Journet L. , Sorg I. , Agrain C. , Cornelis G. R. . ( 2005;). Bacterial injectisomes: needle length does matter. Science 307: 1278 [CrossRef] [PubMed].
    [Google Scholar]
  47. Nicholson T. L. . ( 2007;). Construction and validation of a first-generation Bordetella bronchiseptica long-oligonucleotide microarray by transcriptional profiling the Bvg regulon. BMC Genomics 8: 220 [CrossRef] [PubMed].
    [Google Scholar]
  48. Nivaskumar M. , Francetic O. . ( 2014;). Type II secretion system: a magic beanstalk or a protein escalator. Biochim Biophys Acta 1843: 1568–1577 [CrossRef] [PubMed].
    [Google Scholar]
  49. Noofeli M. , Bokhari H. , Blackburn P. , Roberts M. , Coote J. G. , Parton R. . ( 2011;). BapC autotransporter protein is a virulence determinant of Bordetella pertussis . Microb Pathog 51: 169–177 [CrossRef] [PubMed].
    [Google Scholar]
  50. O'Callaghan D. , Cazevieille C. , Allardet-Servent A. , Boschiroli M. L. , Bourg G. , Foulongne V. , Frutos P. , Kulakov Y. , Ramuz M. . ( 1999;). A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis . Mol Microbiol 33: 1210–1220 [CrossRef] [PubMed].
    [Google Scholar]
  51. Pantoja M. , Chen L. , Chen Y. , Nester E. W. . ( 2002;). Agrobacterium type IV secretion is a two-step process in which export substrates associate with the virulence protein VirJ in the periplasm. Mol Microbiol 45: 1325–1335 [CrossRef] [PubMed].
    [Google Scholar]
  52. Park J. , Zhang Y. , Buboltz A. M. , Zhang X. , Schuster S. C. , Ahuja U. , Liu M. , Miller J. F. , Sebaihia M. , other authors . ( 2012;). Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics 13: 545 [CrossRef] [PubMed].
    [Google Scholar]
  53. Parkhill J. , Sebaihia M. , Preston A. , Murphy L. D. , Thomson N. , Harris D. E. , Holden M. T. G. , Churcher C. M. , Bentley S. D. , other authors . ( 2003;). Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica . Nat Genet 35: 32–40 [CrossRef] [PubMed].
    [Google Scholar]
  54. Peabody C. R. , Chung Y. J. , Yen M.-R. , Vidal-Ingigliardi D. , Pugsley A. P. , Saier M. H. J. Jr . ( 2003;). Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149: 3051–3072 [CrossRef] [PubMed].
    [Google Scholar]
  55. Pittman M. . ( 1984;). The concept of pertussis as a toxin-mediated disease. Pediatr Infect Dis 3: 467–486 [CrossRef] [PubMed].
    [Google Scholar]
  56. Pittman M. . ( 1986;). Neurotoxicity of Bordetella pertussis . Neurotoxicology 7: 53–67 [PubMed].
    [Google Scholar]
  57. Pukatzki S. , Ma A. T. , Revel A. T. , Sturtevant D. , Mekalanos J. J. . ( 2007;). Type V secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104: 15508–15513 [CrossRef] [PubMed].
    [Google Scholar]
  58. Rambow-Larsen A. A. , Weiss A. A. . ( 2004;). Temporal expression of pertussis toxin and Ptl secretion proteins by Bordetella persussis . J Bacteriol 186: 43–50.[CrossRef]
    [Google Scholar]
  59. R Development Core Team ( 2008;). R: a Language and Environment for Statistical Computing Vienna: R Foundation for Statistical Computing;.
    [Google Scholar]
  60. Reddy J. D. , Reddy S. L. , Hopkins D. L. , Gabriel D. W. . ( 2007;). TolC is required for pathogenicity of Xylella fastidiosa in Vitis vinifera grapevines. Mol Plant Microbe Interact 20: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  61. Russell A. B. , Hood R. D. , Bui N. K. , LeRoux M. , Vollmer W. , Mougous J. D. . ( 2011;). Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475: 343–347 [CrossRef] [PubMed].
    [Google Scholar]
  62. Saier M. H. Jr . ( 2004;). Evolution of bacterial type III protein secretion systems. Trends Microbiol 12: 113–115 [CrossRef] [PubMed].
    [Google Scholar]
  63. Sandkvist M. . ( 2001;). Biology of type II secretion. Mol Microbiol 40: 271–283 [CrossRef] [PubMed].
    [Google Scholar]
  64. Schwarz S. , West T. E. , Boyer F. , Chiang W.-C. , Carl M. A. , Hood R. D. , Rohmer L. , Tolker-Nielsen T. , Skerrett S. J. , Mougous J. D. . ( 2010;). Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6: e1001068 [CrossRef] [PubMed].
    [Google Scholar]
  65. Sebaihia M. , Preston A. , Maskell D. J. , Kuzmiak H. , Connell T. D. , King N. D. , Orndorff P. E. , Miyamoto D. M. , Thomson N. R. , other authors . ( 2006;). Comparison of the genome sequence of the poultry pathogen Bordetella avium with those of B. bronchiseptica, B. pertussis and B. parapertussis reveals extensive diversity in surface structures associated with host interaction. J Bacteriol 188: 6002–6015 [CrossRef] [PubMed].
    [Google Scholar]
  66. Seeger M. A. , Schiefner A. , Eicher T. , Verrey F. , Diederichs K. , Pos K. M. . ( 2006;). Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313: 1295–1298 [CrossRef] [PubMed].
    [Google Scholar]
  67. Shrivastava S. , Mande S. S. . ( 2008;). Identification and functional characterization of gene components of type VI secretion system in bacterial genomes. PLoS One 3: e2955 [CrossRef] [PubMed].
    [Google Scholar]
  68. Shrivastava R. , Miller J. F. . ( 2009;). Virulence factor secretion and translocation by Bordetella species. Curr Opin Microbiol 12: 88–93 [CrossRef] [PubMed].
    [Google Scholar]
  69. Snel B. , Lehmann G. , Bork P. , Huynen M. A. . ( 2000;). string: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28: 3442–3444 [CrossRef] [PubMed].
    [Google Scholar]
  70. Stone C. B. , Bulir D. C. , Gilchrist J. D. , Toor R. K. , Mahony J. B. . ( 2010;). Interactions between flagellar and type III secretion proteins in Chlamydia pneumoniae . BMC Microbiol 10: 18 [CrossRef] [PubMed].
    [Google Scholar]
  71. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  72. Thanassi D. G. , Hultgren S. J. . ( 2000;). Multiple pathways allow protein secretion across the bacterial outer membrane. Curr Opin Cell Biol 12: 420–430 [CrossRef] [PubMed].
    [Google Scholar]
  73. Thomas S. , Holland I. B. , Schmitt L. . ( 2014;). The type 1 secretion pathway — the hemolysin system and beyond. Biochim Biophys Acta 1843: 1629–1641 [CrossRef] [PubMed].
    [Google Scholar]
  74. Tseng T.-T. , Tyler B. M. , Setubal J. C. . ( 2009;). Protein secretion systems in bacterial–host associations, and their description in the gene ontology. BMC Microbiol 9 (Suppl 1:., S2 [CrossRef] [PubMed].
    [Google Scholar]
  75. Vernikos G. S. , Parkhill J. . ( 2006;). Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22: 2196–2203 [CrossRef] [PubMed].
    [Google Scholar]
  76. Wang Y. , Chen Z. , Qiao F. , Ying T. , Yuan J. , Zhong Z. , Zhou L. , Du X. , Wang Z. , other authors . ( 2009;). Comparative proteomics analyses reveal the virB of B. melitensis affects expression of intracellular survival related proteins. PLoS One 4: e5368 [CrossRef] [PubMed].
    [Google Scholar]
  77. Weiss A. A. , Johnson F. D. , Burns D. L. . ( 1993;). Molecular characterization of an operon required for pertussis toxin secretion. Proc Natl Acad Sci U S A 90: 2970–2974 [CrossRef] [PubMed].
    [Google Scholar]
  78. Weyrich L. S. , Rolin O. Y. , Muse S. J. , Park J. , Spidale N. , Kennett M. J. , Hester S. E. , Chen C. , Dudley E. G. , Harvill E. T. . ( 2012;). A type VI secretion system encoding locus is required for Bordetella bronchiseptica immunomodulation and persistence in vivo . PLoS One 7: e45892 [CrossRef] [PubMed].
    [Google Scholar]
  79. Wu H.-Y. , Chung P.-C. , Shih H.-W. , Wen S.-R. , Lai E.-M. . ( 2008;). Secretome analysis uncovers an Hcp-family protein secreted via a type VI secretion system in Agrobacterium tumefaciens . J Bacteriol 190: 2841–2850 [CrossRef] [PubMed].
    [Google Scholar]
  80. Zhang H. , Zhang H. , Gao Z.-Q. , Wang W.-J. , Liu G.-F. , Xu J.-H. , Su X.-D. , Dong Y.-H. . ( 2013;). Structure of the type VI effector-immunity complex (Tae4-Tai4) provides novel insights into the inhibition mechanism of the effector by its immunity protein. J Biol Chem 288: 5928–5939 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000197
Loading
/content/journal/micro/10.1099/mic.0.000197
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error