1887

Abstract

The 1928 Bundaberg disaster is one of the greatest vaccine tragedies in history. Of 21 children immunized with a diphtheria toxin–antitoxin preparation contaminated with , 18 developed life-threatening disease and 12 died within 48 h. Historically, the deaths have been attributed to α-toxin, a secreted cytotoxin produced by most strains, yet the ability of the Bundaberg contaminant microbe to produce the toxin has never been verified. For the first time, the ability of the original strain to produce α-toxin and other virulence factors is investigated. The study investigates the genetic and regulatory loci mediating α-toxin expression by PCR and assesses production of the cytotoxin using an erythrocyte haemolysis assay. This analysis is extended to other secreted virulence factors produced by the strain, and their sufficiency to cause lethality in New Zealand white rabbits is determined. Although the strain possesses a wild-type allele for α-toxin, it must have a defective regulatory system, which is responsible for the strain's minimal α-toxin production. The strain encodes and produces staphylococcal superantigens, including toxic shock syndrome toxin-1 (TSST-1), which is sufficient to cause lethality in patients. The findings cast doubt on the belief that α-toxin is the major virulence factor responsible for the Bundaberg fatalities and point to the superantigen TSST-1 as the cause of the disaster.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000196
2015-12-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2361.html?itemId=/content/journal/micro/10.1099/mic.0.000196&mimeType=html&fmt=ahah

References

  1. Royal Commission of Inquiry into the Fatalities at Bundaberg ( 1928;). Report of the Royal Commission of Inquiry into the Fatalities at Bundaberg Canberra: H. J. Green;.
    [Google Scholar]
  2. Berube B. J., Bubeck Wardenburg J.. ( 2013;). Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins (Basel) 5: 1140–1166 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bhakdi S., Tranum-Jensen J.. ( 1991;). Alpha-toxin of Staphylococcus aureus. Microbiol Rev 55: 733–751 [PubMed].
    [Google Scholar]
  4. Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C.. ( 1984;). A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal Biochem 136: 175–179 [CrossRef] [PubMed].
    [Google Scholar]
  5. Blomster-Hautamaa D. A., Schlievert P. M.. ( 1988;). Preparation of toxic shock syndrome toxin-1.. Methods Enzymol 165: 37–43 [CrossRef] [PubMed].
    [Google Scholar]
  6. Blomster-Hautamaa D. A., Kreiswirth B. N., Novick R. P., Schlievert P. M.. ( 1986;). Resolution of highly purified toxic-shock syndrome toxin 1 into two distinct proteins by isoelectric focusing. Biochemistry 25: 54–59 [CrossRef] [PubMed].
    [Google Scholar]
  7. Burnet F. M.. ( 1929;). The exotoins of Staphylococcus pyogenes aureus. J Pathol Bacteriol 32: 717–733 [CrossRef].
    [Google Scholar]
  8. Cheung G. Y., Duong A. C., Otto M.. ( 2012;). Direct and synergistic hemolysis caused by Staphylococcus phenol-soluble modulins: implications for diagnosis and pathogenesis. Microbes Infect 14: 380–386 [CrossRef] [PubMed].
    [Google Scholar]
  9. Davis J. P., Chesney P. J., Wand P. J., LaVenture M.. ( 1980;). Toxic-shock syndrome: epidemiologic features, recurrence, risk factors, and prevention. N Engl J Med 303: 1429–1435 [CrossRef] [PubMed].
    [Google Scholar]
  10. Dinges M. M., Orwin P. M., Schlievert P. M.. ( 2000;). Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13: 16–34 [CrossRef] [PubMed].
    [Google Scholar]
  11. Flack C. E., Zurek O. W., Meishery D. D., Pallister K. B., Malone C. L., Horswill A. R., Voyich J. M.. ( 2014;). Differential regulation of staphylococcal virulence by the sensor kinase SaeS in response to neutrophil-derived stimuli. Proc Natl Acad Sci U S A 111: E2037–E2045 [CrossRef] [PubMed].
    [Google Scholar]
  12. Geisinger E., Chen J., Novick R. P.. ( 2012;). Allele-dependent differences in quorum-sensing dynamics result in variant expression of virulence genes in Staphylococcus aureus. J Bacteriol 194: 2854–2864 [CrossRef] [PubMed].
    [Google Scholar]
  13. Glenny A. T., Stevens M.. ( 1935;). Staphylococcus toxins and antitoxins. J Pathol Bacteriol 40: 201–210 [CrossRef].
    [Google Scholar]
  14. Jarraud S., Peyrat M. A., Lim A., Tristan A., Bes M., Mougel C., Etienne J., Vandenesch F., Bonneville M., Lina G.. ( 2001;). egc, A highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol 166: 669–677 [CrossRef] [PubMed].
    [Google Scholar]
  15. John C. C., Niermann M., Sharon B., Peterson M. L., Kranz D. M., Schlievert P. M.. ( 2009;). Staphylococcal toxic shock syndrome erythroderma is associated with superantigenicity and hypersensitivity. Clin Infect Dis 49: 1893–1896 [CrossRef] [PubMed].
    [Google Scholar]
  16. Lina G., Bohach G. A., Nair S. P., Hiramatsu K., Jouvin-Marche E.,, Mariuzza R.. & International Nomenclature Committee for Staphylococcal Superantigens ( 2004;). Standard nomenclature for the superantigens expressed by Staphylococcus. J Infect Dis 189: 2334–2336 [CrossRef] [PubMed].
    [Google Scholar]
  17. Mairpady Shambat S., Haggar A., Vandenesch F., Lina G., van Wamel W. J., Arakere G., Svensson M., Norrby-Teglund A.. ( 2014;). Levels of alpha-toxin correlate with distinct phenotypic response profiles of blood mononuclear cells and with agr background of community-associated Staphylococcus aureus isolates. PLoS One 9: e106107 [CrossRef] [PubMed].
    [Google Scholar]
  18. Nowrouzian F. L., Ali A., Badiou C., Dauwalder O., Lina G., Josefsson E.. ( 2015;). Impacts of enterotoxin gene cluster-encoded superantigens on local and systemic experimental Staphylococcus aureus infections. Eur J Clin Microbiol Infect Dis 34: 1443–1449 [CrossRef] [PubMed].
    [Google Scholar]
  19. Pang Y. Y., Schwartz J., Thoendel M., Ackermann L. W., Horswill A. R., Nauseef W. M.. ( 2010;). agr-Dependent interactions of Staphylococcus aureus USA300 with human polymorphonuclear neutrophils. J Innate Immun 2: 546–559 [CrossRef] [PubMed].
    [Google Scholar]
  20. Pragman A. A., Schlievert P. M.. ( 2004;). Virulence regulation in Staphylococcus aureus: the need for in vivo analysis of virulence factor regulation. FEMS Immunol Med Microbiol 42: 147–154 [CrossRef] [PubMed].
    [Google Scholar]
  21. Priest B. P., Schlievert P. M., Dunn D. L.. ( 1989;). Treatment of toxic shock syndrome with endotoxin-neutralizing antibody. J Surg Res 46: 527–531 [CrossRef] [PubMed].
    [Google Scholar]
  22. Salgado-Pabón W., Case-Cook L. C., Schlievert P. M.. ( 2014;). Molecular analysis of staphylococcal superantigens. Methods Mol Biol 1085: 169–185 [CrossRef] [PubMed].
    [Google Scholar]
  23. Schlievert P. M.. ( 1982;). Enhancement of host susceptibility to lethal endotoxin shock by staphylococcal pyrogenic exotoxin type C. Infect Immun 36: 123–128 [PubMed].
    [Google Scholar]
  24. Schlievert P. M.. ( 1988;). Immunochemical assays for toxic shock syndrome toxin-1. Methods Enzymol 165: 339–344 [CrossRef] [PubMed].
    [Google Scholar]
  25. Shands K. N., Schmid G. P., Dan B. B., Blum D., Guidotti R. J., Hargrett N. T., Anderson R. L., Hill D. L., Broome C. V., other authors. ( 1980;). Toxic-shock syndrome in menstruating women: association with tampon use and Staphylococcus aureus and clinical features in 52 cases. N Engl J Med 303: 1436–1442 [CrossRef] [PubMed].
    [Google Scholar]
  26. Spaulding A. R., Lin Y. C., Merriman J. A., Brosnahan A. J., Peterson M. L., Schlievert P. M.. ( 2012;). Immunity to Staphylococcus aureus secreted proteins protects rabbits from serious illnesses. Vaccine 30: 5099–5109 [CrossRef] [PubMed].
    [Google Scholar]
  27. Spaulding A. R., Salgado-Pabón W., Kohler P. L., Horswill A. R., Leung D. Y., Schlievert P. M.. ( 2013;). Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 26: 422–447 [CrossRef] [PubMed].
    [Google Scholar]
  28. Stich N., Waclavicek M., Model N., Eibl M. M.. ( 2010;). Staphylococcal superantigen (TSST-1) mutant analysis reveals that T cell activation is required for biological effects in the rabbit including the cytokine storm. Toxins 2: 2272–2288 [CrossRef] [PubMed].
    [Google Scholar]
  29. Thoendel M., Kavanaugh J. S., Flack C. E., Horswill A. R.. ( 2011;). Peptide signaling in the staphylococci. Chem Rev 111: 117–151 [CrossRef] [PubMed].
    [Google Scholar]
  30. Todd J., Fishaut M., Kapral F., Welch T.. ( 1978;). Toxic-shock syndrome associated with phage-group-I staphylococci. Lancet 312: 1116–1118 [CrossRef] [PubMed].
    [Google Scholar]
  31. Vu B. G., Stach C. S., Salgado-Pabón W., Diekema D. J., Gardner S. E., Schlievert P. M.. ( 2014;). Superantigens of Staphylococcus aureus from patients with diabetic foot ulcers. J Infect Dis 210: 1920–1927 [CrossRef] [PubMed].
    [Google Scholar]
  32. Westphal O., Luderitz O., Keiderling W.. ( 1952;). [Effects of bacterial toxins; biochemical analysis of inflammation]. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 158: 152–160 [PubMed].
    [Google Scholar]
  33. Wiseman G. M.. ( 1975;). The hemolysins of Staphylococcus aureus. Bacteriol Rev 39: 317–344 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000196
Loading
/content/journal/micro/10.1099/mic.0.000196
Loading

Data & Media loading...

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error