1887

Abstract

The respiratory chain of ethanol-producing shows an unusual physiological property in that it is not involved in energy conservation, even though this organism has a complete electron transport system. We reported previously that respiratory-deficient mutants (RDMs) of exhibit higher growth rates and enhanced ethanol productivity under aerobic and high-temperature conditions. Here, we demonstrated that the salt tolerance of RDM strains was drastically decreased compared with the wild-type strain. We found that the NADH/NAD ratio was maintained at low levels in both the wild-type and the RDM strains under non-stress conditions. However, the ratio substantially increased in the RDM strains in response to salt stress. Complementation of the deficient respiratory-chain genes in the RDM strains resulted in a decrease in the NADH/NAD ratio and an increase in the growth rate. In contrast, expression of malate dehydrogenase, activity of which increases the supply of NADH, in the RDM strains led to an increased NADH/NAD ratio and resulted in poor growth. Taken together, these results suggest that the respiratory chain of functions to maintain a low NADH/NAD ratio when the cells are exposed to environmental stresses, such as salinity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000195
2015-12-01
2019-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2384.html?itemId=/content/journal/micro/10.1099/mic.0.000195&mimeType=html&fmt=ahah

References

  1. Balodite E., Strazdina I., Galinina N., McLean S., Rutkis R., Poole R. K., Kalnenieks U.. ( 2014;). Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase. Microbiology 160: 2045–2052 [CrossRef] [PubMed].
    [Google Scholar]
  2. Binkley W. W., Wolfrom M. L.. ( 1953;). Composition of cane juice and cane final molasses. Adv Carbohydr Chem 8: 291–314 [PubMed].
    [Google Scholar]
  3. Bradford M. M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254 [CrossRef] [PubMed].
    [Google Scholar]
  4. Charoensuk K., Irie A., Lertwattanasakul N., Sootsuwan K., Thanonkeo P., Yamada M.. ( 2011;). Physiological importance of cytochrome c peroxidase in ethanologenic thermotolerant Zymomonas mobilis. J Mol Microbiol Biotechnol 20: 70–82 [CrossRef] [PubMed].
    [Google Scholar]
  5. de Graef M. R., Alexeeva S., Snoep J. L., Teixeira de Mattos M. J.. ( 1999;). The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181: 2351–2357 [PubMed].
    [Google Scholar]
  6. Desiniotis A., Kouvelis V. N., Davenport K., Bruce D., Detter C., Tapia R., Han C., Goodwin L. A., Woyke T., other authors. ( 2012;). Complete genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis centrotype ATCC 29191. J Bacteriol 194: 5966–5967 [CrossRef] [PubMed].
    [Google Scholar]
  7. Hayashi T., Furuta Y., Furukawa K.. ( 2011;). Respiration-deficient mutants of Zymomonas mobilis show improved growth and ethanol fermentation under aerobic and high temperature conditions. J Biosci Bioeng 111: 414–419 [CrossRef] [PubMed].
    [Google Scholar]
  8. Hayashi T., Kato T., Furukawa K.. ( 2012;). Respiratory chain analysis of Zymomonas mobilis mutants producing high levels of ethanol. Appl Environ Microbiol 78: 5622–5629 [CrossRef] [PubMed].
    [Google Scholar]
  9. Horton R. M., Cai Z. L., Ho S. N., Pease L. R.. ( 1990;). Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8: 528–535 [PubMed].
    [Google Scholar]
  10. Kalnenieks U.. ( 2006;). Physiology of Zymomonas mobilis: some unanswered questions. Adv Microb Physiol 51: 73–117 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kalnenieks U., Galinina N., Strazdina I., Kravale Z., Pickford J. L., Rutkis R., Poole R. K.. ( 2008;). NADH dehydrogenase deficiency results in low respiration rate and improved aerobic growth of Zymomonas mobilis. Microbiology 154: 989–994 [CrossRef] [PubMed].
    [Google Scholar]
  12. Liu Q., Lin Z., Zhang Y., Li Y., Wang Z., Chen T.. ( 2014;). Improved poly(3-hydroxybutyrate) production in Escherichia coli by inactivation of cytochrome bd-II oxidase or/and NDH-II dehydrogenase in low efficient respiratory chains. J Biotechnol 192: (Pt A) 170–176 [CrossRef] [PubMed].
    [Google Scholar]
  13. Loos H., Krämer R., Sahm H., Sprenger G. A.. ( 1994;). Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose–fructose oxidoreductase in osmoprotection. J Bacteriol 176: 7688–7693 [PubMed].
    [Google Scholar]
  14. Okamoto T., Nakamura K.. ( 1992;). Simple and highly efficient transformation method for Zymomonas mobilis: electroporation. Biosci Biotechnol Biochem 56: 833 [CrossRef].
    [Google Scholar]
  15. Park S. C., Baratti J.. ( 1992;). Effects of potassium chloride on ethanol production by an osmotolerant mutant of Zymomonas mobilis. Appl Microbiol Biotechnol 38: 542–549.
    [Google Scholar]
  16. Ranatunga T. D., Jervis J., Helm R. F., McMillan J. D., Wooley R. J.. ( 2000;). The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganics, uronic acids and ether-soluble organics. Enzyme Microb Technol 27: 240–247 [CrossRef] [PubMed].
    [Google Scholar]
  17. Reyes L., Scopes R. K.. ( 1991;). Membrane-associated ATPase from Zymomonas mobilis; purification and characterization. Biochim Biophys Acta 1068: 174–178 [CrossRef] [PubMed].
    [Google Scholar]
  18. Rogers P. L., Lee K. L., Tribe D. E.. ( 1980;). High productivity ethanol fermentations with Zymomonas mobilis. Process Biochem 15: 7–11.
    [Google Scholar]
  19. Rutkis R., Galinina N., Strazdina I., Kalnenieks U.. ( 2014;). The inefficient aerobic energetics of Zymomonas mobilis: identifying the bottleneck. J Basic Microbiol 54: 1090–1097 [CrossRef] [PubMed].
    [Google Scholar]
  20. Seo J. S., Chong H., Park H. S., Yoon K. O., Jung C., Kim J. J., Hong J. H., Kim H., Kim J. H., other authors. ( 2005;). The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 23: 63–68 [CrossRef] [PubMed].
    [Google Scholar]
  21. Shah J., Desai P. T., Chen D., Stevens J. R., Weimer B. C.. ( 2013;). Preadaptation to cold stress in Salmonella enterica serovar Typhimurium increases survival during subsequent acid stress exposure. Appl Environ Microbiol 79: 7281–7289 [CrossRef] [PubMed].
    [Google Scholar]
  22. Snoep J. L., de Graef M. R., Teixeira de Mattos M. J., Neijssel O. M.. ( 1994;). Effect of culture conditions on the NADH/NAD ratio and total amounts of NAD(H) in chemostat cultures of Enterococcus faecalis NCTC 775. FEMS Microbiol Lett 116: 263–267 [CrossRef] [PubMed].
    [Google Scholar]
  23. Sootsuwan K., Lertwattanasakul N., Thanonkeo P., Matsushita K., Yamada M.. ( 2008;). Analysis of the respiratory chain in ethanologenic Zymomonas mobilis with a cyanide-resistant bd-type ubiquinol oxidase as the only terminal oxidase and its possible physiological roles. J Mol Microbiol Biotechnol 14: 163–175 [CrossRef] [PubMed].
    [Google Scholar]
  24. Sootsuwan K., Thanonkeo P., Keeratirakha N., Thanonkeo S., Jaisil P., Yamada M.. ( 2013;). Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnol Biofuels 6: 180 [CrossRef] [PubMed].
    [Google Scholar]
  25. Sprenger G. A.. ( 1996;). Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS Microbiol Lett 145: 301–307 [CrossRef].
    [Google Scholar]
  26. Strazdina I., Kravale Z., Galinina N., Rutkis R., Poole R. K., Kalnenieks U.. ( 2012;). Electron transport and oxidative stress in Zymomonas mobilis respiratory mutants. Arch Microbiol 194: 461–471 [CrossRef] [PubMed].
    [Google Scholar]
  27. Swings J., De Ley J.. ( 1977;). The biology of Zymomonas. Bacteriol Rev 41: 1–46 [PubMed].
    [Google Scholar]
  28. Tsuge Y., Hori Y., Kudou M., Ishii J., Hasunuma T., Kondo A.. ( 2014;). Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions. Appl Microbiol Biotechnol 98: 8675–8683 [CrossRef] [PubMed].
    [Google Scholar]
  29. Vilchèze C., Weisbrod T. R., Chen B., Kremer L., Hazbón M. H., Wang F., Alland D., Sacchettini J. C., Jacobs W. R. Jr. ( 2005;). Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother 49: 708–720 [CrossRef] [PubMed].
    [Google Scholar]
  30. Vriesekoop F., Rasmusson M., Pamment N. B.. ( 2002;). Respective effects of sodium and chloride ions on filament formation and growth and ethanol production in Zymomonas mobilis fermentations. Lett Appl Microbiol 35: 27–31 [CrossRef] [PubMed].
    [Google Scholar]
  31. Wood J. M.. ( 1999;). Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63: 230–262 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000195
Loading
/content/journal/micro/10.1099/mic.0.000195
Loading

Data & Media loading...

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error