Similarities in murine infection and immune response to and Free

Abstract

In 1982, (ss) was identified as the aetiological agent of Lyme disease. Since then an increasing number of (sl) species have been isolated in the United States. To date, many of these species remain understudied despite mounting evidence associating them with human illness. is a spirochaete closely related to that has been loosely associated with human illness. Using an experimental murine infection model, we compared the infectivity and humoral immune response with a North American isolate of and using culture, molecular and serological methods. The original cultures were unable to infect immunocompetent mice, but were confirmed to be infectious after adaptation in immunodeficient animals. infection resulted in spirochaete burdens similar to in skin, heart and bladder whereas significantly lower burdens were observed in the joint tissues. induced an antibody response similar to as measured by both immunoblotting and the C6 ELISA. Additionally, this isolate of was sequenced on the Ion Torrent PGM, which successfully identified many genes orthologous to mammalian virulence factors described in . Similarities seen between both infections in this well-characterized murine model contribute to our understanding of the potential pathogenic nature of . Infection dynamics of and especially the induced humoral response, are similar to , suggesting this species may contribute to the epidemiology of human borreliosis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000192
2015-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2352.html?itemId=/content/journal/micro/10.1099/mic.0.000192&mimeType=html&fmt=ahah

References

  1. Aguero-Rosenfeld M. E., Wang G., Schwartz I., Wormser G. P. (2005). Diagnosis of lyme borreliosisClin Microbiol Rev 18484509 [View Article][PubMed]. [Google Scholar]
  2. Anderson J. M., Norris D. E. (2006). Genetic diversity of Borrelia burgdorferi sensu stricto in Peromyscus leucopus, the primary reservoir of Lyme disease in a region of endemicity in southern MarylandAppl Environ Microbiol 7253315341 [View Article][PubMed]. [Google Scholar]
  3. Bacon R. M., Biggerstaff B. J., Schriefer M. E., Gilmore R. D. Jr, Philipp M. T., Steere A. C., Wormser G. P., Marques A. R., Johnson B. J. (2003). Serodiagnosis of Lyme disease by kinetic enzyme-linked immunosorbent assay using recombinant VlsE1 or peptide antigens of Borrelia burgdorferi compared with 2-tiered testing using whole-cell lysatesJ Infect Dis 18711871199 [View Article][PubMed]. [Google Scholar]
  4. Bacon R. M., Kugeler K. J., Mead P. S., Centers for Disease Control and Prevention (CDC). (2008). Surveillance for Lyme disease – United States, 1992–2006MMWR Surveill Summ 5719[PubMed]. [Google Scholar]
  5. Barbour A. G. (1984). Isolation and cultivation of Lyme disease spirochetesYale J Biol Med 57521525[PubMed]. [Google Scholar]
  6. Branda J. A., Strle F., Strle K., Sikand N., Ferraro M. J., Steere A. C. (2013). Performance of United States serologic assays in the diagnosis of Lyme borreliosis acquired in EuropeClin Infect Dis 57333340 [View Article][PubMed]. [Google Scholar]
  7. Burgdorfer W., Barbour A. G., Hayes S. F., Benach J. L., Grunwaldt E., Davis J. P. (1982). Lyme disease – a tick-borne spirochetosis?Science 21613171319 [View Article][PubMed]. [Google Scholar]
  8. Casjens S. R., Mongodin E. F., Qiu W. G., Luft B. J., Schutzer S. E., Gilcrease E. B., Huang W. M., Vujadinovic M., Aron J. K., other authors. (2012). Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmidsPLoS One 7e33280 [View Article][PubMed]. [Google Scholar]
  9. CDC (2011). Reported cases of lyme disease by state or locality, 2002–2011. Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, US Centers for Disease Control and Prevention, Atlanta, GA. [Updated 29 October 2012]. http://goo.gl/p1Q84. .
  10. Chevreux B., Wetter T., Suhai S. (1999). Genome sequence assembly using trace signals and additional sequence informationConference on Bioinformatics, pp. 4556 (in German). [Google Scholar]
  11. Delcher A. L., Harmon D., Kasif S., White O., Salzberg S. L. (1999). Improved microbial gene identification with GLIMMERNucleic Acids Res 2746364641 [View Article][PubMed]. [Google Scholar]
  12. Dressler F., Ackermann R., Steere A. C. (1994). Antibody responses to the three genomic groups of Borrelia burgdorferi in European Lyme borreliosisJ Infect Dis 169313318 [View Article][PubMed]. [Google Scholar]
  13. Eisen L., Dolan M. C., Piesman J., Lane R. S. (2003). Vector competence of Ixodes pacificus and I. spinipalpis (Acari: Ixodidae), and reservoir competence of the dusky-footed woodrat (Neotoma fuscipes) and the deer mouse (Peromyscus maniculatus), for Borrelia bissettiiJ Med Entomol 40311320 [View Article][PubMed]. [Google Scholar]
  14. Estrada-Peña A., Jongejan F. (1999). Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmissionExp Appl Acarol 23685715 [View Article][PubMed]. [Google Scholar]
  15. Franke J., Hildebrandt A., Dorn W. (2013). Exploring gaps in our knowledge on Lyme borreliosis spirochaetes – updates on complex heterogeneity, ecology, and pathogenicityTicks Tick Borne Dis 41125 [View Article][PubMed]. [Google Scholar]
  16. Girard Y. A., Fedorova N., Lane R. S. (2011). Genetic diversity of Borrelia burgdorferi and detection of B. bissettii-like DNA in serum of north-coastal California residentsJ Clin Microbiol 49945954 [View Article][PubMed]. [Google Scholar]
  17. Grasperge B. J., Reif K. E., Morgan T. D., Sunyakumthorn P., Bynog J., Paddock C. D., Macaluso K. R. (2012). Susceptibility of inbred mice to Rickettsia parkeriInfect Immun 8018461852 [View Article][PubMed]. [Google Scholar]
  18. Gray J., Kahl O., Lane R. S., Stanek G. (2002). Lyme Borreliosis: Biology, Epidemiology and ControlWallingford: [View Article]CABI Publishing. [Google Scholar]
  19. Grimm D., Elias A. F., Tilly K., Rosa P. A. (2003). Plasmid stability during in vitro propagation of Borrelia burgdorferi assessed at a clonal levelInfect Immun 7131383145 [View Article][PubMed]. [Google Scholar]
  20. Hauser U., Lehnert G., Lobentanzer R., Wilske B. (1997). Interpretation criteria for standardized Western blots for three European species of Borrelia burgdorferi sensu latoJ Clin Microbiol 3514331444[PubMed]. [Google Scholar]
  21. Hauser U., Lehnert G., Wilske B. (1998a). Diagnostic value of proteins of three Borrelia species (Borrelia burgdorferi sensu lato) and implications for development and use of recombinant antigens for serodiagnosis of Lyme borreliosis in EuropeClin Diagn Lab Immunol 5456462[PubMed]. [Google Scholar]
  22. Hauser U., Krahl H., Peters H., Fingerle V., Wilske B. (1998b). Impact of strain heterogeneity on Lyme disease serology in Europe: comparison of enzyme-linked immunosorbent assays using different species of Borrelia burgdorferi sensu latoJ Clin Microbiol 36427436[PubMed]. [Google Scholar]
  23. Hinckley A. F., Connally N. P., Meek J. I., Johnson B. J., Kemperman M. M., Feldman K. A., White J. L., Mead P. S. (2014). Lyme disease testing by large commercial laboratories in the United StatesClin Infect Dis 59676681 [View Article][PubMed]. [Google Scholar]
  24. Hofmeister E. K., Glass G. E., Childs J. E., Persing D. H. (1999). Population dynamics of a naturally occurring heterogeneous mixture of Borrelia burgdorferi clonesInfect Immun 6757095716[PubMed]. [Google Scholar]
  25. Iyer R., Caimano M. J., Luthra A., Axline D. Jr, Corona A., Iacobas D. A., Radolf J. D., Schwartz I. (2015). Stage-specific global alterations in the transcriptomes of Lyme disease spirochetes during tick feeding and following mammalian host adaptationMol Microbiol 95509538 [View Article][PubMed]. [Google Scholar]
  26. Kenedy M. R., Lenhart T. R., Akins D. R. (2012). The role of Borrelia burgdorferi outer surface proteinsFEMS Immunol Med Microbiol 66119 [View Article][PubMed]. [Google Scholar]
  27. Kiewra D., Lonc E. (2012). Epidemiological consequences of host specificity of ticks (Ixodida)Ann Parasitol 58181187[PubMed]. [Google Scholar]
  28. Kurtenbach K., Hanincová K., Tsao J. I., Margos G., Fish D., Ogden N. H. (2006). Fundamental processes in the evolutionary ecology of Lyme borreliosisNat Rev Microbiol 4660669 [View Article][PubMed]. [Google Scholar]
  29. Liang F. T., Steere A. C., Marques A. R., Johnson B. J., Miller J. N., Philipp M. T. (1999). Sensitive and specific serodiagnosis of Lyme disease by enzyme-linked immunosorbent assay with a peptide based on an immunodominant conserved region of Borrelia burgdorferi VlsEJ Clin Microbiol 3739903996[PubMed]. [Google Scholar]
  30. Liang F. T., Aberer E., Cinco M., Gern L., Hu C. M., Lobet Y. N., Ruscio M., Voet P. E. Jr, Weynants V. E., Philipp M. T. (2000). Antigenic conservation of an immunodominant invariable region of the VlsE lipoprotein among European pathogenic genospecies of Borrelia burgdorferi SLJ Infect Dis 18214551462 [View Article][PubMed]. [Google Scholar]
  31. Margos G., Vollmer S. A., Ogden N. H., Fish D. (2011). Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu latoInfect Genet Evol 1115451563 [View Article][PubMed]. [Google Scholar]
  32. Margos G., Castillo-Ramírez S., Hoen A. G. (2012). Phylogeography of Lyme borreliosis-group spirochetes and methicillin-resistant Staphylococcus aureusParasitology 13919521965 [View Article][PubMed]. [Google Scholar]
  33. Marston C. K., Hoffmaster A. R., Wilson K. E., Bragg S. L., Plikaytis B., Brachman P., Johnson S., Kaufmann A. F., Popovic T. (2005). Effects of long-term storage on plasmid stability in Bacillus anthracisAppl Environ Microbiol 7177787780 [View Article][PubMed]. [Google Scholar]
  34. Maupin G. O., Gage K. L., Piesman J., Montenieri J., Sviat S. L., VanderZanden L., Happ C. M., Dolan M., Johnson B. J. (1994). Discovery of an enzootic cycle of Borrelia burgdorferi in Neotoma mexicana and Ixodes spinipalpis from northern Colorado, an area where Lyme disease is nonendemicJ Infect Dis 170636643 [View Article][PubMed]. [Google Scholar]
  35. Mavin S., Milner R. M., Evans R., Chatterton J. M., Joss A. W., Ho-Yen D. O. (2007). The use of local isolates in Western blots improves serological diagnosis of Lyme disease in ScotlandJ Med Microbiol 564751 [View Article][PubMed]. [Google Scholar]
  36. Millen K., Kugeler K. J., Hinckley A. F., Lawaczeck E. W., Mead P. S. (2013). Elevated Lyme disease seroprevalence among dogs in a nonendemic county: harbinger or artifact?Vector Borne Zoonotic Dis 13340341 [View Article][PubMed]. [Google Scholar]
  37. Mogilyansky E., Loa C. C., Adelson M. E., Mordechai E., Tilton R. C. (2004). Comparison of Western immunoblotting and the C6 Lyme antibody test for laboratory detection of Lyme diseaseClin Diagn Lab Immunol 11924929[PubMed]. [Google Scholar]
  38. Nadelman R. B., Wormser G. P. (1998). Lyme borreliosisLancet 352557565 [View Article][PubMed]. [Google Scholar]
  39. Norman G. L., Antig J. M., Bigaignon G., Hogrefe W. R. (1996). Serodiagnosis of Lyme borreliosis by Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii western blots (immunoblots)J Clin Microbiol 3417321738[PubMed]. [Google Scholar]
  40. Piesman J., Gern L. (2004). Lyme borreliosis in Europe and North AmericaParasitology 129 (Suppl)S191S220 [View Article][PubMed]. [Google Scholar]
  41. Purser J. E., Norris S. J. (2000). Correlation between plasmid content and infectivity in Borrelia burgdorferiProc Natl Acad Sci U S A 971386513870 [View Article][PubMed]. [Google Scholar]
  42. Qiu W. G., Martin C. L. (2014). Evolutionary genomics of Borrelia burgdorferi sensu lato: findings, hypotheses, and the rise of hybridsInfect Genet Evol 27576593 [View Article][PubMed]. [Google Scholar]
  43. Rizzoli A., Hauffe H., Carpi G., Vourc H. G., Neteler M., Rosa R. (2011). Lyme borreliosis in EuropeEuro Surveill 1616[PubMed]. [Google Scholar]
  44. Robertson J., Guy E., Andrews N., Wilske B., Anda P., Granström M., Hauser U., Moosmann Y., Sambri V., other authors. (2000). A European multicenter study of immunoblotting in serodiagnosis of lyme borreliosisJ Clin Microbiol 3820972102[PubMed]. [Google Scholar]
  45. Rudenko N., Golovchenko M., Mokrácek A., Piskunová N., Ruzek D., Mallatová N., Grubhoffer L. (2008). Detection of Borrelia bissettii in cardiac valve tissue of a patient with endocarditis and aortic valve stenosis in the Czech RepublicJ Clin Microbiol 4635403543 [View Article][PubMed]. [Google Scholar]
  46. Rudenko N., Golovchenko M., Ru˙zõek D., Piskunova N., Mallátová N., Grubhoffer L. (2009). Molecular detection of Borrelia bissettii DNA in serum samples from patients in the Czech Republic with suspected borreliosisFEMS Microbiol Lett 292274281 [View Article][PubMed]. [Google Scholar]
  47. Schneider B. S., Zeidner N. S., Burkot T. R., Maupin G. O., Piesman J. (2000). Borrelia isolates in Northern Colorado identified as Borrelia bissettiiJ Clin Microbiol 3831033105[PubMed]. [Google Scholar]
  48. Schneider B. S., Schriefer M. E., Dietrich G., Dolan M. C., Morshed M. G., Zeidner N. S. (2008). Borrelia bissettii isolates induce pathology in a murine model of diseaseVector Borne Zoonotic Dis 8623634 [View Article][PubMed]. [Google Scholar]
  49. Schutzer S. E., Fraser-Liggett C. M., Casjens S. R., Qiu W. G., Dunn J. J., Mongodin E. F., Luft B. J. (2011). Whole-genome sequences of thirteen isolates of Borrelia burgdorferiJ Bacteriol 19310181020 [View Article][PubMed]. [Google Scholar]
  50. Schutzer S. E., Fraser-Liggett C. M., Qiu W. G., Kraiczy P., Mongodin E. F., Dunn J. J., Luft B. J., Casjens S. R. (2012). Whole-genome sequences of Borrelia bissettiiBorrelia valaisiana, and Borrelia spielmanii. J Bacteriol 194545546 [View Article][PubMed]. [Google Scholar]
  51. Sinsky R. J., Piesman J. (1989). Ear punch biopsy method for detection and isolation of Borrelia burgdorferi from rodentsJ Clin Microbiol 2717231727[PubMed]. [Google Scholar]
  52. Stanek G., Reiter M. (2011). The expanding Lyme Borrelia complex – clinical significance of genomic species?Clin Microbiol Infect 17487493 [View Article][PubMed]. [Google Scholar]
  53. Wang G., van Dam A. P., Schwartz I., Dankert J. (1999). Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implicationsClin Microbiol Rev 12633653[PubMed]. [Google Scholar]
  54. Wormser G. P., Dattwyler R. J., Shapiro E. D., Halperin J. J., Steere A. C., Klempner M. S., Krause P. J., Bakken J. S., Strle F., other authors. (2006). The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of AmericaClin Infect Dis 4310891134 [View Article][PubMed]. [Google Scholar]
  55. Wormser G. P., Liveris D., Hanincová K., Brisson D., Ludin S., Stracuzzi V. J., Embers M. E., Philipp M. T., Levin A., other authors. (2008). Effect of Borrelia burgdorferi genotype on the sensitivity of C6 and 2-tier testing in North American patients with culture-confirmed Lyme diseaseClin Infect Dis 47910914 [View Article][PubMed]. [Google Scholar]
  56. Zanetti A. S., Pornwiroon W., Kearney M. T., Macaluso K. R. (2008). Characterization of rickettsial infection in Amblyomma americanum (Acari: Ixodidae) by quantitative real-time polymerase chain reactionJ Med Entomol 45267275 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000192
Loading
/content/journal/micro/10.1099/mic.0.000192
Loading

Data & Media loading...

Most cited Most Cited RSS feed