1887

Abstract

In 1982, (ss) was identified as the aetiological agent of Lyme disease. Since then an increasing number of (sl) species have been isolated in the United States. To date, many of these species remain understudied despite mounting evidence associating them with human illness. is a spirochaete closely related to that has been loosely associated with human illness. Using an experimental murine infection model, we compared the infectivity and humoral immune response with a North American isolate of and using culture, molecular and serological methods. The original cultures were unable to infect immunocompetent mice, but were confirmed to be infectious after adaptation in immunodeficient animals. infection resulted in spirochaete burdens similar to in skin, heart and bladder whereas significantly lower burdens were observed in the joint tissues. induced an antibody response similar to as measured by both immunoblotting and the C6 ELISA. Additionally, this isolate of was sequenced on the Ion Torrent PGM, which successfully identified many genes orthologous to mammalian virulence factors described in . Similarities seen between both infections in this well-characterized murine model contribute to our understanding of the potential pathogenic nature of . Infection dynamics of and especially the induced humoral response, are similar to , suggesting this species may contribute to the epidemiology of human borreliosis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000192
2015-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2352.html?itemId=/content/journal/micro/10.1099/mic.0.000192&mimeType=html&fmt=ahah

References

  1. Aguero-Rosenfeld M. E., Wang G., Schwartz I., Wormser G. P.. ( 2005;). Diagnosis of lyme borreliosis. Clin Microbiol Rev 18: 484–509 [CrossRef] [PubMed].
    [Google Scholar]
  2. Anderson J. M., Norris D. E.. ( 2006;). Genetic diversity of Borrelia burgdorferi sensu stricto in Peromyscus leucopus, the primary reservoir of Lyme disease in a region of endemicity in southern Maryland. Appl Environ Microbiol 72: 5331–5341 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bacon R. M., Biggerstaff B. J., Schriefer M. E., Gilmore R. D. Jr, Philipp M. T., Steere A. C., Wormser G. P., Marques A. R., Johnson B. J.. ( 2003;). Serodiagnosis of Lyme disease by kinetic enzyme-linked immunosorbent assay using recombinant VlsE1 or peptide antigens of Borrelia burgdorferi compared with 2-tiered testing using whole-cell lysates. J Infect Dis 187: 1187–1199 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bacon R. M., Kugeler K. J., Mead P. S., Centers for Disease Control and Prevention (CDC). ( 2008;). Surveillance for Lyme disease – United States, 1992–2006. MMWR Surveill Summ 57: 1–9 [PubMed].
    [Google Scholar]
  5. Barbour A. G.. ( 1984;). Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57: 521–525 [PubMed].
    [Google Scholar]
  6. Branda J. A., Strle F., Strle K., Sikand N., Ferraro M. J., Steere A. C.. ( 2013;). Performance of United States serologic assays in the diagnosis of Lyme borreliosis acquired in Europe. Clin Infect Dis 57: 333–340 [CrossRef] [PubMed].
    [Google Scholar]
  7. Burgdorfer W., Barbour A. G., Hayes S. F., Benach J. L., Grunwaldt E., Davis J. P.. ( 1982;). Lyme disease – a tick-borne spirochetosis?. Science 216: 1317–1319 [CrossRef] [PubMed].
    [Google Scholar]
  8. Casjens S. R., Mongodin E. F., Qiu W. G., Luft B. J., Schutzer S. E., Gilcrease E. B., Huang W. M., Vujadinovic M., Aron J. K., other authors. ( 2012;). Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One 7: e33280 [CrossRef] [PubMed].
    [Google Scholar]
  9. CDC ( 2011;). Reported cases of lyme disease by state or locality, 2002–2011. Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, US Centers for Disease Control and Prevention, Atlanta, GA. [Updated 29 October 2012]. http://goo.gl/p1Q84.. .
  10. Chevreux B., Wetter T., Suhai S.. ( 1999;). Genome sequence assembly using trace signals and additional sequence information. Conference on Bioinformatics, pp. 45–56 (in German).
    [Google Scholar]
  11. Delcher A. L., Harmon D., Kasif S., White O., Salzberg S. L.. ( 1999;). Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27: 4636–4641 [CrossRef] [PubMed].
    [Google Scholar]
  12. Dressler F., Ackermann R., Steere A. C.. ( 1994;). Antibody responses to the three genomic groups of Borrelia burgdorferi in European Lyme borreliosis. J Infect Dis 169: 313–318 [CrossRef] [PubMed].
    [Google Scholar]
  13. Eisen L., Dolan M. C., Piesman J., Lane R. S.. ( 2003;). Vector competence of Ixodes pacificus and I. spinipalpis (Acari: Ixodidae), and reservoir competence of the dusky-footed woodrat (Neotoma fuscipes) and the deer mouse (Peromyscus maniculatus), for Borrelia bissettii. J Med Entomol 40: 311–320 [CrossRef] [PubMed].
    [Google Scholar]
  14. Estrada-Peña A., Jongejan F.. ( 1999;). Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp Appl Acarol 23: 685–715 [CrossRef] [PubMed].
    [Google Scholar]
  15. Franke J., Hildebrandt A., Dorn W.. ( 2013;). Exploring gaps in our knowledge on Lyme borreliosis spirochaetes – updates on complex heterogeneity, ecology, and pathogenicity. Ticks Tick Borne Dis 4: 11–25 [CrossRef] [PubMed].
    [Google Scholar]
  16. Girard Y. A., Fedorova N., Lane R. S.. ( 2011;). Genetic diversity of Borrelia burgdorferi and detection of B. bissettii-like DNA in serum of north-coastal California residents. J Clin Microbiol 49: 945–954 [CrossRef] [PubMed].
    [Google Scholar]
  17. Grasperge B. J., Reif K. E., Morgan T. D., Sunyakumthorn P., Bynog J., Paddock C. D., Macaluso K. R.. ( 2012;). Susceptibility of inbred mice to Rickettsia parkeri. Infect Immun 80: 1846–1852 [CrossRef] [PubMed].
    [Google Scholar]
  18. Gray J., Kahl O., Lane R. S., Stanek G.. ( 2002;). Lyme Borreliosis: Biology, Epidemiology and Control Wallingford:: [CrossRef] CABI Publishing;.
    [Google Scholar]
  19. Grimm D., Elias A. F., Tilly K., Rosa P. A.. ( 2003;). Plasmid stability during in vitro propagation of Borrelia burgdorferi assessed at a clonal level. Infect Immun 71: 3138–3145 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hauser U., Lehnert G., Lobentanzer R., Wilske B.. ( 1997;). Interpretation criteria for standardized Western blots for three European species of Borrelia burgdorferi sensu lato. J Clin Microbiol 35: 1433–1444 [PubMed].
    [Google Scholar]
  21. Hauser U., Lehnert G., Wilske B.. ( 1998a;). Diagnostic value of proteins of three Borrelia species (Borrelia burgdorferi sensu lato) and implications for development and use of recombinant antigens for serodiagnosis of Lyme borreliosis in Europe. Clin Diagn Lab Immunol 5: 456–462 [PubMed].
    [Google Scholar]
  22. Hauser U., Krahl H., Peters H., Fingerle V., Wilske B.. ( 1998b;). Impact of strain heterogeneity on Lyme disease serology in Europe: comparison of enzyme-linked immunosorbent assays using different species of Borrelia burgdorferi sensu lato. J Clin Microbiol 36: 427–436 [PubMed].
    [Google Scholar]
  23. Hinckley A. F., Connally N. P., Meek J. I., Johnson B. J., Kemperman M. M., Feldman K. A., White J. L., Mead P. S.. ( 2014;). Lyme disease testing by large commercial laboratories in the United States. Clin Infect Dis 59: 676–681 [CrossRef] [PubMed].
    [Google Scholar]
  24. Hofmeister E. K., Glass G. E., Childs J. E., Persing D. H.. ( 1999;). Population dynamics of a naturally occurring heterogeneous mixture of Borrelia burgdorferi clones. Infect Immun 67: 5709–5716 [PubMed].
    [Google Scholar]
  25. Iyer R., Caimano M. J., Luthra A., Axline D. Jr, Corona A., Iacobas D. A., Radolf J. D., Schwartz I.. ( 2015;). Stage-specific global alterations in the transcriptomes of Lyme disease spirochetes during tick feeding and following mammalian host adaptation. Mol Microbiol 95: 509–538 [CrossRef] [PubMed].
    [Google Scholar]
  26. Kenedy M. R., Lenhart T. R., Akins D. R.. ( 2012;). The role of Borrelia burgdorferi outer surface proteins. FEMS Immunol Med Microbiol 66: 1–19 [CrossRef] [PubMed].
    [Google Scholar]
  27. Kiewra D., Lonc E.. ( 2012;). Epidemiological consequences of host specificity of ticks (Ixodida). Ann Parasitol 58: 181–187 [PubMed].
    [Google Scholar]
  28. Kurtenbach K., Hanincová K., Tsao J. I., Margos G., Fish D., Ogden N. H.. ( 2006;). Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat Rev Microbiol 4: 660–669 [CrossRef] [PubMed].
    [Google Scholar]
  29. Liang F. T., Steere A. C., Marques A. R., Johnson B. J., Miller J. N., Philipp M. T.. ( 1999;). Sensitive and specific serodiagnosis of Lyme disease by enzyme-linked immunosorbent assay with a peptide based on an immunodominant conserved region of Borrelia burgdorferi VlsE. J Clin Microbiol 37: 3990–3996 [PubMed].
    [Google Scholar]
  30. Liang F. T., Aberer E., Cinco M., Gern L., Hu C. M., Lobet Y. N., Ruscio M., Voet P. E. Jr, Weynants V. E., Philipp M. T.. ( 2000;). Antigenic conservation of an immunodominant invariable region of the VlsE lipoprotein among European pathogenic genospecies of Borrelia burgdorferi SL. J Infect Dis 182: 1455–1462 [CrossRef] [PubMed].
    [Google Scholar]
  31. Margos G., Vollmer S. A., Ogden N. H., Fish D.. ( 2011;). Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol 11: 1545–1563 [CrossRef] [PubMed].
    [Google Scholar]
  32. Margos G., Castillo-Ramírez S., Hoen A. G.. ( 2012;). Phylogeography of Lyme borreliosis-group spirochetes and methicillin-resistant Staphylococcus aureus. Parasitology 139: 1952–1965 [CrossRef] [PubMed].
    [Google Scholar]
  33. Marston C. K., Hoffmaster A. R., Wilson K. E., Bragg S. L., Plikaytis B., Brachman P., Johnson S., Kaufmann A. F., Popovic T.. ( 2005;). Effects of long-term storage on plasmid stability in Bacillus anthracis. Appl Environ Microbiol 71: 7778–7780 [CrossRef] [PubMed].
    [Google Scholar]
  34. Maupin G. O., Gage K. L., Piesman J., Montenieri J., Sviat S. L., VanderZanden L., Happ C. M., Dolan M., Johnson B. J.. ( 1994;). Discovery of an enzootic cycle of Borrelia burgdorferi in Neotoma mexicana and Ixodes spinipalpis from northern Colorado, an area where Lyme disease is nonendemic. J Infect Dis 170: 636–643 [CrossRef] [PubMed].
    [Google Scholar]
  35. Mavin S., Milner R. M., Evans R., Chatterton J. M., Joss A. W., Ho-Yen D. O.. ( 2007;). The use of local isolates in Western blots improves serological diagnosis of Lyme disease in Scotland. J Med Microbiol 56: 47–51 [CrossRef] [PubMed].
    [Google Scholar]
  36. Millen K., Kugeler K. J., Hinckley A. F., Lawaczeck E. W., Mead P. S.. ( 2013;). Elevated Lyme disease seroprevalence among dogs in a nonendemic county: harbinger or artifact?. Vector Borne Zoonotic Dis 13: 340–341 [CrossRef] [PubMed].
    [Google Scholar]
  37. Mogilyansky E., Loa C. C., Adelson M. E., Mordechai E., Tilton R. C.. ( 2004;). Comparison of Western immunoblotting and the C6 Lyme antibody test for laboratory detection of Lyme disease. Clin Diagn Lab Immunol 11: 924–929 [PubMed].
    [Google Scholar]
  38. Nadelman R. B., Wormser G. P.. ( 1998;). Lyme borreliosis. Lancet 352: 557–565 [CrossRef] [PubMed].
    [Google Scholar]
  39. Norman G. L., Antig J. M., Bigaignon G., Hogrefe W. R.. ( 1996;). Serodiagnosis of Lyme borreliosis by Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii western blots (immunoblots). J Clin Microbiol 34: 1732–1738 [PubMed].
    [Google Scholar]
  40. Piesman J., Gern L.. ( 2004;). Lyme borreliosis in Europe and North America. Parasitology 129 (Suppl): S191–S220 [CrossRef] [PubMed].
    [Google Scholar]
  41. Purser J. E., Norris S. J.. ( 2000;). Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc Natl Acad Sci U S A 97: 13865–13870 [CrossRef] [PubMed].
    [Google Scholar]
  42. Qiu W. G., Martin C. L.. ( 2014;). Evolutionary genomics of Borrelia burgdorferi sensu lato: findings, hypotheses, and the rise of hybrids. Infect Genet Evol 27: 576–593 [CrossRef] [PubMed].
    [Google Scholar]
  43. Rizzoli A., Hauffe H., Carpi G., Vourc H. G., Neteler M., Rosa R.. ( 2011;). Lyme borreliosis in Europe. Euro Surveill 16: 16 [PubMed].
    [Google Scholar]
  44. Robertson J., Guy E., Andrews N., Wilske B., Anda P., Granström M., Hauser U., Moosmann Y., Sambri V., other authors. ( 2000;). A European multicenter study of immunoblotting in serodiagnosis of lyme borreliosis. J Clin Microbiol 38: 2097–2102 [PubMed].
    [Google Scholar]
  45. Rudenko N., Golovchenko M., Mokrácek A., Piskunová N., Ruzek D., Mallatová N., Grubhoffer L.. ( 2008;). Detection of Borrelia bissettii in cardiac valve tissue of a patient with endocarditis and aortic valve stenosis in the Czech Republic. J Clin Microbiol 46: 3540–3543 [CrossRef] [PubMed].
    [Google Scholar]
  46. Rudenko N., Golovchenko M., Ru˙zõek D., Piskunova N., Mallátová N., Grubhoffer L.. ( 2009;). Molecular detection of Borrelia bissettii DNA in serum samples from patients in the Czech Republic with suspected borreliosis. FEMS Microbiol Lett 292: 274–281 [CrossRef] [PubMed].
    [Google Scholar]
  47. Schneider B. S., Zeidner N. S., Burkot T. R., Maupin G. O., Piesman J.. ( 2000;). Borrelia isolates in Northern Colorado identified as Borrelia bissettii. J Clin Microbiol 38: 3103–3105 [PubMed].
    [Google Scholar]
  48. Schneider B. S., Schriefer M. E., Dietrich G., Dolan M. C., Morshed M. G., Zeidner N. S.. ( 2008;). Borrelia bissettii isolates induce pathology in a murine model of disease. Vector Borne Zoonotic Dis 8: 623–634 [CrossRef] [PubMed].
    [Google Scholar]
  49. Schutzer S. E., Fraser-Liggett C. M., Casjens S. R., Qiu W. G., Dunn J. J., Mongodin E. F., Luft B. J.. ( 2011;). Whole-genome sequences of thirteen isolates of Borrelia burgdorferi. J Bacteriol 193: 1018–1020 [CrossRef] [PubMed].
    [Google Scholar]
  50. Schutzer S. E., Fraser-Liggett C. M., Qiu W. G., Kraiczy P., Mongodin E. F., Dunn J. J., Luft B. J., Casjens S. R.. ( 2012;). Whole-genome sequences of Borrelia bissettii. Borrelia valaisiana, and Borrelia spielmanii. J Bacteriol 194: 545–546 [CrossRef] [PubMed].
    [Google Scholar]
  51. Sinsky R. J., Piesman J.. ( 1989;). Ear punch biopsy method for detection and isolation of Borrelia burgdorferi from rodents. J Clin Microbiol 27: 1723–1727 [PubMed].
    [Google Scholar]
  52. Stanek G., Reiter M.. ( 2011;). The expanding Lyme Borrelia complex – clinical significance of genomic species?. Clin Microbiol Infect 17: 487–493 [CrossRef] [PubMed].
    [Google Scholar]
  53. Wang G., van Dam A. P., Schwartz I., Dankert J.. ( 1999;). Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin Microbiol Rev 12: 633–653 [PubMed].
    [Google Scholar]
  54. Wormser G. P., Dattwyler R. J., Shapiro E. D., Halperin J. J., Steere A. C., Klempner M. S., Krause P. J., Bakken J. S., Strle F., other authors. ( 2006;). The clinical assessment, treatment, and prevention of lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 43: 1089–1134 [CrossRef] [PubMed].
    [Google Scholar]
  55. Wormser G. P., Liveris D., Hanincová K., Brisson D., Ludin S., Stracuzzi V. J., Embers M. E., Philipp M. T., Levin A., other authors. ( 2008;). Effect of Borrelia burgdorferi genotype on the sensitivity of C6 and 2-tier testing in North American patients with culture-confirmed Lyme disease. Clin Infect Dis 47: 910–914 [CrossRef] [PubMed].
    [Google Scholar]
  56. Zanetti A. S., Pornwiroon W., Kearney M. T., Macaluso K. R.. ( 2008;). Characterization of rickettsial infection in Amblyomma americanum (Acari: Ixodidae) by quantitative real-time polymerase chain reaction. J Med Entomol 45: 267–275 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000192
Loading
/content/journal/micro/10.1099/mic.0.000192
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error