1887

Abstract

Pseudomonads produce several lipopeptide biosurfactants that have antimicrobial properties but that also facilitate surface motility and influence biofilm formation. Detailed studies addressing the significance of lipopeptides for biofilm formation and architecture are rare. Hence, the present study sets out to determine the specific role of the lipopeptide viscosin in SBW25 biofilm formation, architecture and dispersal, and to relate gene expression to viscosin production and effect. Initially, we compared biofilm formation of SBW25 and the viscosin-deficient mutant strain SBW25Δ in static microtitre assays. These experiments demonstrated that viscosin had little influence on the amount of biofilm formed by SBW25 during the early stages of biofilm development. Later, however, SBW25 formed significantly less biofilm than SBW25Δ. The indication that viscosin is involved in biofilm dispersal was confirmed by chemical complementation of the mutant biofilm. Furthermore, a fluorescent bioreporter showed that expression was induced in biofilms 4 h prior to dispersal. Subsequent detailed studies of biofilms formed in flow cells for up to 5 days revealed that SBW25 and SBW25Δ developed comparable biofilms dominated by well-defined, mushroom-shaped structures. Carbon starvation was required to obtain biofilm dispersal in this system. Dispersal of SBW25 biofilms was significantly greater than of SBW25Δ biofilms after 3 h and, importantly, carbon starvation strongly induced expression, in particular for cells that were apparently leaving the biofilm. Thus, the present study points to a role for viscosin-facilitated motility in dispersal of SBW25 biofilms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000191
2015-12-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2289.html?itemId=/content/journal/micro/10.1099/mic.0.000191&mimeType=html&fmt=ahah

References

  1. Abalos A. , Pinazo A. , Infante M. R. , Casals M. , García F. , Manresa A. . ( 2001;). Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17: 1367–1371 [CrossRef].
    [Google Scholar]
  2. Alsohim A. S. , Taylor T. B. , Barrett G. A. , Gallie J. , Zhang X. X. , Altamirano-Junqueira A. E. , Johnson L. J. , Rainey P. B. , Jackson R. W. . ( 2014;). The biosurfactant viscosin produced by Pseudomonas fluorescens SBW25 aids spreading motility and plant growth promotion. Environ Microbiol 16: 2267–2281 [CrossRef] [PubMed].
    [Google Scholar]
  3. Andersen J. B. , Koch B. , Nielsen T. H. , Sørensen D. , Hansen M. , Nybroe O. , Christophersen C. , Sørensen J. , Molin S. , Givskov M. . ( 2003;). Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum . Microbiology 149: 37–46 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bak F. , Bonnichsen L. , Jørgensen N. O. G. , Nicolaisen M. H. , Nybroe O. . ( 2015;). The biosurfactant viscosin transiently stimulates n-hexadecane mineralization by a bacterial consortium. Appl Microbiol Biotechnol 99: 1475–1483 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bao Y. , Lies D. P. , Fu H. , Roberts G. P. . ( 1991;). An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene 109: 167–168 [CrossRef] [PubMed].
    [Google Scholar]
  6. Boles B. R. , Thoendel M. , Singh P. K. . ( 2005;). Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57: 1210–1223 [CrossRef] [PubMed].
    [Google Scholar]
  7. Boyd C. D. , O'Toole G. A. . ( 2012;). Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems. Annu Rev Cell Dev Biol 28: 439–462 [CrossRef] [PubMed].
    [Google Scholar]
  8. Cárcamo-Oyarce G. , Lumjiaktase P. , Kümmerli R. , Eberl L. . ( 2015;). Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilms. Nat Commun 6: 5945 [CrossRef] [PubMed].
    [Google Scholar]
  9. Crusz S. A. , Popat R. , Rybtke M. T. , Cámara M. , Givskov M. , Tolker-Nielsen T. , Diggle S. P. , Williams P. . ( 2012;). Bursting the bubble on bacterial biofilms: a flow cell methodology. Biofouling 28: 835–842 [CrossRef] [PubMed].
    [Google Scholar]
  10. D'aes J. , Kieu N. P. , Léclère V. , Tokarski C. , Olorunleke F. E. , De Maeyer K. , Jacques P. , Höfte M. , Ongena M. . ( 2014;). To settle or to move? The interplay between two classes of cyclic lipopeptides in the biocontrol strain Pseudomonas CMR12a. Environ Microbiol 16: 2282–2300 [CrossRef] [PubMed].
    [Google Scholar]
  11. Davey M. E. , Caiazza N. C. , O'Toole G. A. . ( 2003;). Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185: 1027–1036 [CrossRef] [PubMed].
    [Google Scholar]
  12. de Bruijn I. , de Kock M. J. D. , Yang M. , de Waard P. , van Beek T. A. , Raaijmakers J. M. . ( 2007;). Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63: 417–428 [CrossRef] [PubMed].
    [Google Scholar]
  13. de Bruijn I. , de Kock M. J. D. , de Waard P. , van Beek T. A. , Raaijmakers J. M. . ( 2008;). Massetolide A biosynthesis in Pseudomonas fluorescens . J Bacteriol 190: 2777–2789 [CrossRef] [PubMed].
    [Google Scholar]
  14. Déziel E. , Lépine F. , Milot S. , Villemur R. . ( 2003;). rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149: 2005–2013 [CrossRef] [PubMed].
    [Google Scholar]
  15. Fechtner J. , Koza A. , Sterpaio P. D. , Hapca S. M. , Spiers A. J. . ( 2011;). Surfactants expressed by soil pseudomonads alter local soil-water distribution, suggesting a hydrological role for these compounds. FEMS Microbiol Ecol 78: 50–58 [CrossRef] [PubMed].
    [Google Scholar]
  16. Gjermansen M. , Nilsson M. , Yang L. , Tolker-Nielsen T. . ( 2010;). Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol 75: 815–826 [CrossRef] [PubMed].
    [Google Scholar]
  17. Grant S. G. , Jessee J. , Bloom F. R. , Hanahan D. . ( 1990;). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87: 4645–4649 [CrossRef] [PubMed].
    [Google Scholar]
  18. Haba E. , Pinazo A. , Jauregui O. , Espuny M. J. , Infante M. R. , Manresa A. . ( 2003;). Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng 81: 316–322 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hall-Stoodley L. , Costerton J. W. , Stoodley P. . ( 2004;). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2: 95–108 [CrossRef] [PubMed].
    [Google Scholar]
  20. Heydorn A. , Nielsen A. T. , Hentzer M. , Sternberg C. , Givskov M. , Ersbøll B. K. , Molin S. . ( 2000;). Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146: 2395–2407 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kassen R. , Llewellyn M. , Rainey P. B. . ( 2004;). Ecological constraints on diversification in a model adaptive radiation. Nature 431: 984–988 [CrossRef] [PubMed].
    [Google Scholar]
  22. King E. O. , Ward M. K. , Raney D. E. . ( 1954;). Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44: 301–307 [PubMed].
    [Google Scholar]
  23. Koch B. , Jensen L. E. , Nybroe O. . ( 2001;). A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Methods 45: 187–195 [CrossRef] [PubMed].
    [Google Scholar]
  24. Koza A. , Hallett P. D. , Moon C. D. , Spiers A. J. . ( 2009;). Characterization of a novel air-liquid interface biofilm of Pseudomonas fluorescens SBW25. Microbiology 155: 1397–1406 [CrossRef] [PubMed].
    [Google Scholar]
  25. Kruijt M. , Tran H. , Raaijmakers J. M. . ( 2009;). Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol 107: 546–556 [CrossRef] [PubMed].
    [Google Scholar]
  26. Kuiper I. , Lagendijk E. L. , Pickford R. , Derrick J. P. , Lamers G. E. M. , Thomas-Oates J. E. , Lugtenberg B. J. J. , Bloemberg G. V. . ( 2004;). Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51: 97–113 [CrossRef] [PubMed].
    [Google Scholar]
  27. Lequette Y. , Greenberg E. P. . ( 2005;). Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 187: 37–44 [CrossRef] [PubMed].
    [Google Scholar]
  28. Li W. , Rokni-Zadeh H. , De Vleeschouwer M. , Ghequire M. G. K. , Sinnaeve D. , Xie G.-L. , Rozenski J. , Madder A. , Martins J. C. , De Mot R. . ( 2013;). The antimicrobial compound xantholysin defines a new group of Pseudomonas cyclic lipopeptides. PLoS One 8: e62946 [PubMed].[CrossRef]
    [Google Scholar]
  29. Mazzola M. , de Bruijn I. , Cohen M. F. , Raaijmakers J. M. . ( 2009;). Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens . Appl Environ Microbiol 75: 6804–6811 [CrossRef] [PubMed].
    [Google Scholar]
  30. O'Toole G. A. , Kolter R. . ( 1998;). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295–304 [CrossRef] [PubMed].
    [Google Scholar]
  31. Pamp S. J. , Tolker-Nielsen T. . ( 2007;). Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa . J Bacteriol 189: 2531–2539 [CrossRef] [PubMed].
    [Google Scholar]
  32. Raaijmakers J. M. , de Bruijn I. , de Kock M. J. D. . ( 2006;). Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact 19: 699–710 [CrossRef] [PubMed].
    [Google Scholar]
  33. Raaijmakers J. M. , De Bruijn I. , Nybroe O. , Ongena M. . ( 2010;). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34: 1037–1062 [CrossRef] [PubMed].
    [Google Scholar]
  34. Rainey P. B. , Bailey M. J. . ( 1996;). Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. Mol Microbiol 19: 521–533 [CrossRef] [PubMed].
    [Google Scholar]
  35. Rainey P. B. , Rainey K. . ( 2003;). Evolution of cooperation and conflict in experimental bacterial populations. Nature 425: 72–74 [CrossRef] [PubMed].
    [Google Scholar]
  36. Roongsawang N. , Hase K. , Haruki M. , Imanaka T. , Morikawa M. , Kanaya S. . ( 2003;). Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem Biol 10: 869–880 [CrossRef] [PubMed].
    [Google Scholar]
  37. Schooling S. R. , Charaf U. K. , Allison D. G. , Gilbert P. . ( 2004;). A role for rhamnolipid in biofilm dispersion. Biofilms 1: 91–99 [CrossRef].
    [Google Scholar]
  38. Silva-Rocha R. , Martínez-García E. , Calles B. , Chavarría M. , Arce-Rodríguez A. , de Las Heras A. , Páez-Espino A. D. , Durante-Rodríguez G. , Kim J. , other authors . ( 2013;). The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41: (D1), D666–D675 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000191
Loading
/content/journal/micro/10.1099/mic.0.000191
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error