Antibiotics are the molecules of choice to treat bacterial infections. However, because of the rapid emergence of drug-resistant bacteria, alternative modes of combating infections are being envisaged. Bacteriophages, which infect and lyse bacterial cells, may function as effective antimicrobial agents. Most bacteriophages produce their own peptidoglycan hydrolase called endolysin or lysin, which breaks down the cell wall of bacteria and aids in the release of newly assembled virions. Here, we discuss several findings that help us in understanding how endolysins are regulated. We observe that there is no common mechanism that is followed in all cases. Many different modes of activity regulation have been observed in endolysins, including regulation of protein expression, translocation across the cell membrane and post-translational modifications. These processes not only demonstrate how endolysins are made dependent on other accessory proteins and non-protein factors for their synthesis, translocation across the cytoplasmic membrane and activity, but also show how autoregulation helps in maintaining the enzyme in an inactive form. Various regulatory mechanisms that are discussed are particularly applicable to endolysins. Nevertheless, a detailed study of these methods opens new avenues of investigation in the area of protein translocation systems and the novel ways of enzyme activation and regulation in bacteria.


Article metrics loading...

Loading full text...

Full text loading...



  1. Arisaka F., Kanamaru S., Leiman P., Rossmann M. G. (2003). The tail lysozyme complex of bacteriophage T4Int J Biochem Cell Biol 351621 [View Article][PubMed]. [Google Scholar]
  2. Bayles K. W. (2000). The bactericidal action of penicillin: new clues to an unsolved mysteryTrends Microbiol 8274278 [View Article][PubMed]. [Google Scholar]
  3. Bayles K. W. (2003). Are the molecular strategies that control apoptosis conserved in bacteria?Trends Microbiol 11306311 [View Article][PubMed]. [Google Scholar]
  4. Berdygulova Z., Westblade L. F., Florens L., Koonin E. V., Chait B. T., Ramanculov E., Washburn M. P., Darst S. A., Severinov K., Minakhin L. (2011). Temporal regulation of gene expression of the Thermus thermophilus bacteriophage P23-45J Mol Biol 405125142 [View Article][PubMed]. [Google Scholar]
  5. Bläsi U., Young R. (1996). Two beginnings for a single purpose: the dual-start holins in the regulation of phage lysisMol Microbiol 21675682 [View Article][PubMed]. [Google Scholar]
  6. Briers Y., Peeters L. M., Volckaert G., Lavigne R. (2011). The lysis cassette of bacteriophage ϕKMV encodes a signal-arrest-release endolysin and a pinholinBacteriophage 12530 [View Article][PubMed]. [Google Scholar]
  7. Bublitz M., Polle L., Holland C., Heinz D. W., Nimtz M., Schubert W. D. (2009). Structural basis for autoinhibition and activation of Auto, a virulence-associated peptidoglycan hydrolase of Listeria monocytogenes Mol Microbiol 7115091522 [View Article][PubMed]. [Google Scholar]
  8. Buey R. M., Monterroso B., Menéndez M., Diakun G., Chacón P., Hermoso J. A., Díaz J. F. (2007). Insights into molecular plasticity of choline binding proteins (pneumococcal surface proteins) by SAXSJ Mol Biol 365411424 [View Article][PubMed]. [Google Scholar]
  9. Catalão M. J., Gil F., Moniz-Pereira J., Pimentel M. (2010). The mycobacteriophage Ms6 encodes a chaperone-like protein involved in the endolysin delivery to the peptidoglycanMol Microbiol 77672686 [View Article][PubMed]. [Google Scholar]
  10. Catalão M. J., Gil F., Moniz-Pereira J., Pimentel M. (2011a). Functional analysis of the holin-like proteins of mycobacteriophage Ms6J Bacteriol 19327932803 [View Article][PubMed]. [Google Scholar]
  11. Catalão M. J., Gil F., Moniz-Pereira J., Pimentel M. (2011b). The endolysin-binding domain encompasses the N-terminal region of the mycobacteriophage Ms6 Gp1 chaperoneJ Bacteriol 19350025006 [View Article][PubMed]. [Google Scholar]
  12. Cheng X., Zhang X., Pflugrath J. W., Studier F. W. (1994). The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymeraseProc Natl Acad Sci U S A 9140344038 [View Article][PubMed]. [Google Scholar]
  13. Clementi E. A., Marks L. R., Duffey M. E., Hakansson A. P. (2012). A novel initiation mechanism of death in Streptococcus pneumoniae induced by the human milk protein-lipid complex HAMLET and activated during physiological deathJ Biol Chem 2872716827182 [View Article][PubMed]. [Google Scholar]
  14. Dedrick R. M., Marinelli L. J., Newton G. L., Pogliano K., Pogliano J., Hatfull G. F. (2013). Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage GilesMol Microbiol 88577589 [View Article][PubMed]. [Google Scholar]
  15. Díaz E., Munthali M., Lunsdorf H., Holtje J. V., Timmis K. N. (1996). The two-step lysis system of pneumococcal bacteriophage EJ-1 is functional in Gram-negative bacteria: triggering of the major pneumococcal autolysin in Escherichia coli Mol Microbiol 19667681 [View Article][PubMed]. [Google Scholar]
  16. Duckworth D. H. (1976). Who discovered bacteriophage?Bacteriol Rev 40793802[PubMed]. [Google Scholar]
  17. Dunne M., Mertens H. D., Garefalaki V., Jeffries C. M., Thompson A., Lemke E. A., Svergun D. I., Mayer M. J., Narbad A., Meijers R. (2014). The CD27L and CTP1L endolysins targeting Clostridia contain a built-in trigger and release factorPLoS Pathog 10e1004228[PubMed].[CrossRef] [Google Scholar]
  18. Duplessis M., Russell W. M., Romero D. A., Moineau S. (2005). Global gene expression analysis of two Streptococcus thermophilus bacteriophages using DNA microarrayVirology 340192208 [View Article][PubMed]. [Google Scholar]
  19. Fischetti V. A. (2005). Bacteriophage lytic enzymes: novel anti-infectivesTrends Microbiol 13491496 [View Article][PubMed]. [Google Scholar]
  20. Fischetti V. A. (2008). Bacteriophage lysins as effective antibacterialsCurr Opin Microbiol 11393400 [View Article][PubMed]. [Google Scholar]
  21. Fischetti V. A. (2010). Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogensInt J Med Microbiol 300357362 [View Article][PubMed]. [Google Scholar]
  22. Frias M. J., Melo-Cristino J., Ramirez M. (2009). The autolysin LytA contributes to efficient bacteriophage progeny release in Streptococcus pneumoniae J Bacteriol 19154285440 [View Article][PubMed]. [Google Scholar]
  23. Frias M. J., Melo-Cristino J., Ramirez M. (2013). Export of the pneumococcal phage SV1 lysin requires choline-containing teichoic acids and is holin-independentMol Microbiol 87430445 [View Article][PubMed]. [Google Scholar]
  24. Garcia M., Pimentel M., Moniz-Pereira J. (2002). Expression of Mycobacteriophage Ms6 lysis genes is driven by two sigma70-like promoters and is dependent on a transcription termination signal present in the leader RNAJ Bacteriol 18430343043 [View Article][PubMed]. [Google Scholar]
  25. Goepfert J. M., Naylor H. B. (1967). Characteristics of a lytic enzyme induced by bacteriophage infection of Micrococcus lysodeikticus J Virol 1701710[PubMed]. [Google Scholar]
  26. Hermoso J. A., García J. L., García P. (2007). Taking aim on bacterial pathogens: from phage therapy to enzybioticsCurr Opin Microbiol 10461472 [View Article][PubMed]. [Google Scholar]
  27. Kanamaru S., Ishiwata Y., Suzuki T., Rossmann M. G., Arisaka F. (2005). Control of bacteriophage T4 tail lysozyme activity during the infection processJ Mol Biol 34610131020 [View Article][PubMed]. [Google Scholar]
  28. Kuty G. F., Xu M., Struck D. K., Summer E. J., Young R. (2010). Regulation of a phage endolysin by disulfide cagingJ Bacteriol 19256825687 [View Article][PubMed]. [Google Scholar]
  29. Loeffler J. M., Nelson D., Fischetti V. A. (2001). Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolaseScience 29421702172 [View Article][PubMed]. [Google Scholar]
  30. Loessner M. J. (2005). Bacteriophage endolysins – current state of research and applicationsCurr Opin Microbiol 8480487 [View Article][PubMed]. [Google Scholar]
  31. Loessner M. J., Kramer K., Ebel F., Scherer S. (2002). C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydratesMol Microbiol 44335349 [View Article][PubMed]. [Google Scholar]
  32. Lood R., Winer B. Y., Pelzek A. J., Diez-Martinez R., Thandar M., Euler C. W., Schuch R., Fischetti V. A. (2015). Novel phage lysin capable of killing the multidrug-resistant Gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia modelAntimicrob Agents Chemother 5919831991 [View Article][PubMed]. [Google Scholar]
  33. Low L. Y., Yang C., Perego M., Osterman A., Liddington R. C. (2005). Structure and lytic activity of a Bacillus anthracis prophage endolysinJ Biol Chem 2803543335439 [View Article][PubMed]. [Google Scholar]
  34. Low L. Y., Yang C., Perego M., Osterman A., Liddington R. (2011). Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysinsJ Biol Chem 2863439134403 [View Article][PubMed]. [Google Scholar]
  35. Lukacik P., Barnard T. J., Keller P. W., Chaturvedi K. S., Seddiki N., Fairman J. W., Noinaj N., Kirby T. L., Henderson J. P., other authors. (2012). Structural engineering of a phage lysin that targets Gram-negative pathogensProc Natl Acad Sci U S A 10998579862 [View Article][PubMed]. [Google Scholar]
  36. Luke K., Radek A., Liu X., Campbell J., Uzan M., Haselkorn R., Kogan Y. (2002). Microarray analysis of gene expression during bacteriophage T4 infectionVirology 299182191 [View Article][PubMed]. [Google Scholar]
  37. Martínez-Cuesta M. C., Kok J., Herranz E., Peláez C., Requena T., Buist G. (2000). Requirement of autolytic activity for bacteriocin-induced lysisAppl Environ Microbiol 6631743179 [View Article][PubMed]. [Google Scholar]
  38. McGowan S., Buckle A. M., Mitchell M. S., Hoopes J. T., Gallagher D. T., Heselpoth R. D., Shen Y., Reboul C. F., Law R. H., other authors. (2012). X-ray crystal structure of the streptococcal specific phage lysin PlyCProc Natl Acad Sci U S A 1091275212757 [View Article][PubMed]. [Google Scholar]
  39. McPheeters D. S., Christensen A., Young E. T., Stormo G., Gold L. (1986). Translational regulation of expression of the bacteriophage T4 lysozyme geneNucleic Acids Res 1458135826 [View Article][PubMed]. [Google Scholar]
  40. Mo K. F., Li X., Li H., Low L. Y., Quinn C. P., Boons G. J. (2012). Endolysins of Bacillus anthracis bacteriophages recognize unique carbohydrate epitopes of vegetative cell wall polysaccharides with high affinity and selectivityJ Am Chem Soc 1341555615562 [View Article][PubMed]. [Google Scholar]
  41. Monterroso B., Sáiz J. L., García P., García J. L., Menéndez M. (2008). Insights into the structure-function relationships of pneumococcal cell wall lysozymes, LytC and Cpl-1J Biol Chem 2832861828628 [View Article][PubMed]. [Google Scholar]
  42. Nascimento J. G., Guerreiro-Pereira M. C., Costa S. F., São-José C., Santos M. A. (2008). Nisin-triggered activity of Lys44, the secreted endolysin from Oenococcus oeni phage fOg44J Bacteriol 190457461 [View Article][PubMed]. [Google Scholar]
  43. Nelson D., Loomis L., Fischetti V. A. (2001). Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzymeProc Natl Acad Sci U S A 9841074112 [View Article][PubMed]. [Google Scholar]
  44. Nelson D., Schuch R., Chahales P., Zhu S., Fischetti V. A. (2006). PlyC: a multimeric bacteriophage lysinProc Natl Acad Sci U S A 1031076510770 [View Article][PubMed]. [Google Scholar]
  45. Nguyen H. M., Kang C. (2014). Lysis delay and burst shrinkage of coliphage T7 by deletion of terminator Tφ reversed by deletion of early genesJ Virol 8821072115 [View Article][PubMed]. [Google Scholar]
  46. O'Flaherty S., Ross R. P., Coffey A. (2009). Bacteriophage and their lysins for elimination of infectious bacteriaFEMS Microbiol Rev 33801819 [View Article][PubMed]. [Google Scholar]
  47. Pang T., Park T., Young R. (2010). Mutational analysis of the S21 pinholinMol Microbiol 766877 [View Article][PubMed]. [Google Scholar]
  48. Pang T., Fleming T. C., Pogliano K., Young R. (2013). Visualization of pinholin lesions in vivo Proc Natl Acad Sci U S A 110E2054E2063 [View Article][PubMed]. [Google Scholar]
  49. Park T., Struck D. K., Deaton J. F., Young R. (2006). Topological dynamics of holins in programmed bacterial lysisProc Natl Acad Sci U S A 1031971319718 [View Article][PubMed]. [Google Scholar]
  50. Park T., Struck D. K., Dankenbring C. A., Young R. (2007). The pinholin of lambdoid phage 21: control of lysis by membrane depolarizationJ Bacteriol 18991359139 [View Article][PubMed]. [Google Scholar]
  51. Payne K. M., Hatfull G. F. (2012). Mycobacteriophage endolysins: diverse and modular enzymes with multiple catalytic activitiesPLoS One 7e34052 [View Article][PubMed]. [Google Scholar]
  52. Pohane A. A., Joshi H., Jain V. (2014). Molecular dissection of phage endolysin: an interdomain interaction confers host specificity in Lysin A of Mycobacterium phage D29J Biol Chem 2891208512095 [View Article][PubMed]. [Google Scholar]
  53. Pohane A. A., Patidar N. D., Jain V. (2015). Modulation of domain-domain interaction and protein function by a charged linker: a case study of mycobacteriophage D29 endolysinFEBS Lett 589695701 [View Article][PubMed]. [Google Scholar]
  54. Porter C. J., Schuch R., Pelzek A. J., Buckle A. M., McGowan S., Wilce M. C., Rossjohn J., Russell R., Nelson D., other authors. (2007). The 1.6 Å crystal structure of the catalytic domain of PlyB, a bacteriophage lysin active against Bacillus anthracis J Mol Biol 366540550 [View Article][PubMed]. [Google Scholar]
  55. Reddy B. L., Saier M. H. Jr (2013). Topological and phylogenetic analyses of bacterial holin families and superfamiliesBiochim Biophys Acta 182826542671 [View Article][PubMed]. [Google Scholar]
  56. Resch G., Moreillon P., Fischetti V. A. (2011). A stable phage lysin (Cpl-1) dimer with increased antipneumococcal activity and decreased plasma clearanceInt J Antimicrob Agents 38516521 [View Article][PubMed]. [Google Scholar]
  57. Ruggiero A., Marasco D., Squeglia F., Soldini S., Pedone E., Pedone C., Berisio R. (2010). Structure and functional regulation of RipA, a mycobacterial enzyme essential for daughter cell separationStructure 1811841190 [View Article][PubMed]. [Google Scholar]
  58. Sadykov M. R., Bayles K. W. (2012). The control of death and lysis in staphylococcal biofilms: a coordination of physiological signalsCurr Opin Microbiol 15211215 [View Article][PubMed]. [Google Scholar]
  59. Sanz J. M., Díaz E., García J. L. (1992). Studies on the structure and function of the N-terminal domain of the pneumococcal murein hydrolasesMol Microbiol 6921931 [View Article][PubMed]. [Google Scholar]
  60. São-José C., Parreira R., Vieira G., Santos M. A. (2000). The N-terminal region of the Oenococcus oeni bacteriophage fOg44 lysin behaves as a bona fide signal peptide in Escherichia coli and as a cis-inhibitory element, preventing lytic activity on oenococcal cellsJ Bacteriol 18258235831 [View Article][PubMed]. [Google Scholar]
  61. Savva C. G., Dewey J. S., Moussa S. H., To K. H., Holzenburg A., Young R. (2014). Stable micron-scale holes are a general feature of canonical holinsMol Microbiol 915765 [View Article][PubMed]. [Google Scholar]
  62. Schuch R., Nelson D., Fischetti V. A. (2002). A bacteriolytic agent that detects and kills Bacillus anthracis Nature 418884889 [View Article][PubMed]. [Google Scholar]
  63. Shockman G. D., Daneo-Moore L., Kariyama R., Massidda O. (1996). Bacterial walls, peptidoglycan hydrolases, autolysins, and autolysisMicrob Drug Resist 29598 [View Article][PubMed]. [Google Scholar]
  64. Smith T. J., Blackman S. A., Foster S. J. (1996). Peptidoglycan hydrolases of Bacillus subtilis 168Microb Drug Resist 2113118 [View Article][PubMed]. [Google Scholar]
  65. Steen A., Buist G., Leenhouts K. J., El Khattabi M., Grijpstra F., Zomer A. L., Venema G., Kuipers O. P., Kok J. (2003). Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituentsJ Biol Chem 2782387423881 [View Article][PubMed]. [Google Scholar]
  66. Sudiarta I. P., Fukushima T., Sekiguchi J. (2010). Bacillus subtilis CwlP of the SP-β prophage has two novel peptidoglycan hydrolase domains, muramidase and cross-linkage digesting DD-endopeptidaseJ Biol Chem 2854123241243 [View Article][PubMed]. [Google Scholar]
  67. Sulakvelidze A., Alavidze Z., Morris J. G., Jr. (2001). Bacteriophage therapyAntimicrob Agents Chemother 45649659 [View Article][PubMed]. [Google Scholar]
  68. Sun Q., Kuty G. F., Arockiasamy A., Xu M., Young R., Sacchettini J. C. (2009). Regulation of a muralytic enzyme by dynamic membrane topologyNat Struct Mol Biol 1611921194 [View Article][PubMed]. [Google Scholar]
  69. Tanaka S., Clemons W. M., Jr. (2012). Minimal requirements for inhibition of MraY by lysis protein E from bacteriophage ΦX174Mol Microbiol 85975985 [View Article][PubMed]. [Google Scholar]
  70. Ventura M., Foley S., Bruttin A., Chennoufi S. C., Canchaya C., Brüssow H. (2002). Transcription mapping as a tool in phage genomics: the case of the temperate Streptococcus thermophilus phage Sfi21Virology 2966276 [View Article][PubMed]. [Google Scholar]
  71. Walmagh M., Briers Y., dos Santos S. B., Azeredo J., Lavigne R. (2012). Characterization of modular bacteriophage endolysins from Myoviridae phages OBP, 201φ2-1 and PVP-SE1PLoS One 7e36991 [View Article][PubMed]. [Google Scholar]
  72. Wang S., Kong J., Zhang X. (2008). Identification and characterization of the two-component cell lysis cassette encoded by temperate bacteriophage phiPYB5 of Lactobacillus fermentum J Appl Microbiol 10519391944 [View Article][PubMed]. [Google Scholar]
  73. White R., Chiba S., Pang T., Dewey J. S., Savva C. G., Holzenburg A., Pogliano K., Young R. (2011). Holin triggering in real timeProc Natl Acad Sci U S A 108798803 [View Article][PubMed]. [Google Scholar]
  74. Wittebole X., De Roock S., Opal S. M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogensVirulence 5226235 [View Article][PubMed]. [Google Scholar]
  75. Xu M., Struck D. K., Deaton J., Wang I. N., Young R. (2004). A signal-arrest-release sequence mediates export and control of the phage P1 endolysinProc Natl Acad Sci U S A 10164156420 [View Article][PubMed]. [Google Scholar]
  76. Xu M., Arulandu A., Struck D. K., Swanson S., Sacchettini J. C., Young R. (2005). Disulfide isomerization after membrane release of its SAR domain activates P1 lysozymeScience 307113117 [View Article][PubMed]. [Google Scholar]
  77. Yang D. C., Tan K., Joachimiak A., Bernhardt T. G. (2012). A conformational switch controls cell wall-remodelling enzymes required for bacterial cell divisionMol Microbiol 85768781 [View Article][PubMed]. [Google Scholar]
  78. Young R. (2002). Bacteriophage holins: deadly diversityJ Mol Microbiol Biotechnol 42136[PubMed]. [Google Scholar]
  79. Young R. (2014). Phage lysis: three steps, three choices, one outcomeJ Microbiol 52243258 [View Article][PubMed]. [Google Scholar]
  80. Young I., Wang I., Roof W. D. (2000). Phages will out: strategies of host cell lysisTrends Microbiol 8120128 [View Article][PubMed]. [Google Scholar]
  81. Zhang X., Studier F. W. (2004). Multiple roles of T7 RNA polymerase and T7 lysozyme during bacteriophage T7 infectionJ Mol Biol 340707730 [View Article][PubMed]. [Google Scholar]
  82. Zheng Y., Struck D. K., Young R. (2009). Purification and functional characterization of phiX174 lysis protein EBiochemistry 4849995006 [View Article][PubMed]. [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error