1887

Abstract

Antibiotics are the molecules of choice to treat bacterial infections. However, because of the rapid emergence of drug-resistant bacteria, alternative modes of combating infections are being envisaged. Bacteriophages, which infect and lyse bacterial cells, may function as effective antimicrobial agents. Most bacteriophages produce their own peptidoglycan hydrolase called endolysin or lysin, which breaks down the cell wall of bacteria and aids in the release of newly assembled virions. Here, we discuss several findings that help us in understanding how endolysins are regulated. We observe that there is no common mechanism that is followed in all cases. Many different modes of activity regulation have been observed in endolysins, including regulation of protein expression, translocation across the cell membrane and post-translational modifications. These processes not only demonstrate how endolysins are made dependent on other accessory proteins and non-protein factors for their synthesis, translocation across the cytoplasmic membrane and activity, but also show how autoregulation helps in maintaining the enzyme in an inactive form. Various regulatory mechanisms that are discussed are particularly applicable to endolysins. Nevertheless, a detailed study of these methods opens new avenues of investigation in the area of protein translocation systems and the novel ways of enzyme activation and regulation in bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000190
2015-12-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2269.html?itemId=/content/journal/micro/10.1099/mic.0.000190&mimeType=html&fmt=ahah

References

  1. Arisaka F. , Kanamaru S. , Leiman P. , Rossmann M. G. . ( 2003;). The tail lysozyme complex of bacteriophage T4. Int J Biochem Cell Biol 35: 16–21 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bayles K. W. . ( 2000;). The bactericidal action of penicillin: new clues to an unsolved mystery. Trends Microbiol 8: 274–278 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bayles K. W. . ( 2003;). Are the molecular strategies that control apoptosis conserved in bacteria?. Trends Microbiol 11: 306–311 [CrossRef] [PubMed].
    [Google Scholar]
  4. Berdygulova Z. , Westblade L. F. , Florens L. , Koonin E. V. , Chait B. T. , Ramanculov E. , Washburn M. P. , Darst S. A. , Severinov K. , Minakhin L. . ( 2011;). Temporal regulation of gene expression of the Thermus thermophilus bacteriophage P23-45. J Mol Biol 405: 125–142 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bläsi U. , Young R. . ( 1996;). Two beginnings for a single purpose: the dual-start holins in the regulation of phage lysis. Mol Microbiol 21: 675–682 [CrossRef] [PubMed].
    [Google Scholar]
  6. Briers Y. , Peeters L. M. , Volckaert G. , Lavigne R. . ( 2011;). The lysis cassette of bacteriophage ϕKMV encodes a signal-arrest-release endolysin and a pinholin. Bacteriophage 1: 25–30 [CrossRef] [PubMed].
    [Google Scholar]
  7. Bublitz M. , Polle L. , Holland C. , Heinz D. W. , Nimtz M. , Schubert W. D. . ( 2009;). Structural basis for autoinhibition and activation of Auto, a virulence-associated peptidoglycan hydrolase of Listeria monocytogenes . Mol Microbiol 71: 1509–1522 [CrossRef] [PubMed].
    [Google Scholar]
  8. Buey R. M. , Monterroso B. , Menéndez M. , Diakun G. , Chacón P. , Hermoso J. A. , Díaz J. F. . ( 2007;). Insights into molecular plasticity of choline binding proteins (pneumococcal surface proteins) by SAXS. J Mol Biol 365: 411–424 [CrossRef] [PubMed].
    [Google Scholar]
  9. Catalão M. J. , Gil F. , Moniz-Pereira J. , Pimentel M. . ( 2010;). The mycobacteriophage Ms6 encodes a chaperone-like protein involved in the endolysin delivery to the peptidoglycan. Mol Microbiol 77: 672–686 [CrossRef] [PubMed].
    [Google Scholar]
  10. Catalão M. J. , Gil F. , Moniz-Pereira J. , Pimentel M. . ( 2011a;). Functional analysis of the holin-like proteins of mycobacteriophage Ms6. J Bacteriol 193: 2793–2803 [CrossRef] [PubMed].
    [Google Scholar]
  11. Catalão M. J. , Gil F. , Moniz-Pereira J. , Pimentel M. . ( 2011b;). The endolysin-binding domain encompasses the N-terminal region of the mycobacteriophage Ms6 Gp1 chaperone. J Bacteriol 193: 5002–5006 [CrossRef] [PubMed].
    [Google Scholar]
  12. Cheng X. , Zhang X. , Pflugrath J. W. , Studier F. W. . ( 1994;). The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase. Proc Natl Acad Sci U S A 91: 4034–4038 [CrossRef] [PubMed].
    [Google Scholar]
  13. Clementi E. A. , Marks L. R. , Duffey M. E. , Hakansson A. P. . ( 2012;). A novel initiation mechanism of death in Streptococcus pneumoniae induced by the human milk protein-lipid complex HAMLET and activated during physiological death. J Biol Chem 287: 27168–27182 [CrossRef] [PubMed].
    [Google Scholar]
  14. Dedrick R. M. , Marinelli L. J. , Newton G. L. , Pogliano K. , Pogliano J. , Hatfull G. F. . ( 2013;). Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles. Mol Microbiol 88: 577–589 [CrossRef] [PubMed].
    [Google Scholar]
  15. Díaz E. , Munthali M. , Lunsdorf H. , Holtje J. V. , Timmis K. N. . ( 1996;). The two-step lysis system of pneumococcal bacteriophage EJ-1 is functional in Gram-negative bacteria: triggering of the major pneumococcal autolysin in Escherichia coli . Mol Microbiol 19: 667–681 [CrossRef] [PubMed].
    [Google Scholar]
  16. Duckworth D. H. . ( 1976;). Who discovered bacteriophage?. Bacteriol Rev 40: 793–802 [PubMed].
    [Google Scholar]
  17. Dunne M. , Mertens H. D. , Garefalaki V. , Jeffries C. M. , Thompson A. , Lemke E. A. , Svergun D. I. , Mayer M. J. , Narbad A. , Meijers R. . ( 2014;). The CD27L and CTP1L endolysins targeting Clostridia contain a built-in trigger and release factor. PLoS Pathog 10: e1004228 [PubMed].[CrossRef]
    [Google Scholar]
  18. Duplessis M. , Russell W. M. , Romero D. A. , Moineau S. . ( 2005;). Global gene expression analysis of two Streptococcus thermophilus bacteriophages using DNA microarray. Virology 340: 192–208 [CrossRef] [PubMed].
    [Google Scholar]
  19. Fischetti V. A. . ( 2005;). Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13: 491–496 [CrossRef] [PubMed].
    [Google Scholar]
  20. Fischetti V. A. . ( 2008;). Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol 11: 393–400 [CrossRef] [PubMed].
    [Google Scholar]
  21. Fischetti V. A. . ( 2010;). Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol 300: 357–362 [CrossRef] [PubMed].
    [Google Scholar]
  22. Frias M. J. , Melo-Cristino J. , Ramirez M. . ( 2009;). The autolysin LytA contributes to efficient bacteriophage progeny release in Streptococcus pneumoniae . J Bacteriol 191: 5428–5440 [CrossRef] [PubMed].
    [Google Scholar]
  23. Frias M. J. , Melo-Cristino J. , Ramirez M. . ( 2013;). Export of the pneumococcal phage SV1 lysin requires choline-containing teichoic acids and is holin-independent. Mol Microbiol 87: 430–445 [CrossRef] [PubMed].
    [Google Scholar]
  24. Garcia M. , Pimentel M. , Moniz-Pereira J. . ( 2002;). Expression of Mycobacteriophage Ms6 lysis genes is driven by two sigma70-like promoters and is dependent on a transcription termination signal present in the leader RNA. J Bacteriol 184: 3034–3043 [CrossRef] [PubMed].
    [Google Scholar]
  25. Goepfert J. M. , Naylor H. B. . ( 1967;). Characteristics of a lytic enzyme induced by bacteriophage infection of Micrococcus lysodeikticus . J Virol 1: 701–710 [PubMed].
    [Google Scholar]
  26. Hermoso J. A. , García J. L. , García P. . ( 2007;). Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol 10: 461–472 [CrossRef] [PubMed].
    [Google Scholar]
  27. Kanamaru S. , Ishiwata Y. , Suzuki T. , Rossmann M. G. , Arisaka F. . ( 2005;). Control of bacteriophage T4 tail lysozyme activity during the infection process. J Mol Biol 346: 1013–1020 [CrossRef] [PubMed].
    [Google Scholar]
  28. Kuty G. F. , Xu M. , Struck D. K. , Summer E. J. , Young R. . ( 2010;). Regulation of a phage endolysin by disulfide caging. J Bacteriol 192: 5682–5687 [CrossRef] [PubMed].
    [Google Scholar]
  29. Loeffler J. M. , Nelson D. , Fischetti V. A. . ( 2001;). Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294: 2170–2172 [CrossRef] [PubMed].
    [Google Scholar]
  30. Loessner M. J. . ( 2005;). Bacteriophage endolysins – current state of research and applications. Curr Opin Microbiol 8: 480–487 [CrossRef] [PubMed].
    [Google Scholar]
  31. Loessner M. J. , Kramer K. , Ebel F. , Scherer S. . ( 2002;). C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol 44: 335–349 [CrossRef] [PubMed].
    [Google Scholar]
  32. Lood R. , Winer B. Y. , Pelzek A. J. , Diez-Martinez R. , Thandar M. , Euler C. W. , Schuch R. , Fischetti V. A. . ( 2015;). Novel phage lysin capable of killing the multidrug-resistant Gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob Agents Chemother 59: 1983–1991 [CrossRef] [PubMed].
    [Google Scholar]
  33. Low L. Y. , Yang C. , Perego M. , Osterman A. , Liddington R. C. . ( 2005;). Structure and lytic activity of a Bacillus anthracis prophage endolysin. J Biol Chem 280: 35433–35439 [CrossRef] [PubMed].
    [Google Scholar]
  34. Low L. Y. , Yang C. , Perego M. , Osterman A. , Liddington R. . ( 2011;). Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysins. J Biol Chem 286: 34391–34403 [CrossRef] [PubMed].
    [Google Scholar]
  35. Lukacik P. , Barnard T. J. , Keller P. W. , Chaturvedi K. S. , Seddiki N. , Fairman J. W. , Noinaj N. , Kirby T. L. , Henderson J. P. , other authors . ( 2012;). Structural engineering of a phage lysin that targets Gram-negative pathogens. Proc Natl Acad Sci U S A 109: 9857–9862 [CrossRef] [PubMed].
    [Google Scholar]
  36. Luke K. , Radek A. , Liu X. , Campbell J. , Uzan M. , Haselkorn R. , Kogan Y. . ( 2002;). Microarray analysis of gene expression during bacteriophage T4 infection. Virology 299: 182–191 [CrossRef] [PubMed].
    [Google Scholar]
  37. Martínez-Cuesta M. C. , Kok J. , Herranz E. , Peláez C. , Requena T. , Buist G. . ( 2000;). Requirement of autolytic activity for bacteriocin-induced lysis. Appl Environ Microbiol 66: 3174–3179 [CrossRef] [PubMed].
    [Google Scholar]
  38. McGowan S. , Buckle A. M. , Mitchell M. S. , Hoopes J. T. , Gallagher D. T. , Heselpoth R. D. , Shen Y. , Reboul C. F. , Law R. H. , other authors . ( 2012;). X-ray crystal structure of the streptococcal specific phage lysin PlyC. Proc Natl Acad Sci U S A 109: 12752–12757 [CrossRef] [PubMed].
    [Google Scholar]
  39. McPheeters D. S. , Christensen A. , Young E. T. , Stormo G. , Gold L. . ( 1986;). Translational regulation of expression of the bacteriophage T4 lysozyme gene. Nucleic Acids Res 14: 5813–5826 [CrossRef] [PubMed].
    [Google Scholar]
  40. Mo K. F. , Li X. , Li H. , Low L. Y. , Quinn C. P. , Boons G. J. . ( 2012;). Endolysins of Bacillus anthracis bacteriophages recognize unique carbohydrate epitopes of vegetative cell wall polysaccharides with high affinity and selectivity. J Am Chem Soc 134: 15556–15562 [CrossRef] [PubMed].
    [Google Scholar]
  41. Monterroso B. , Sáiz J. L. , García P. , García J. L. , Menéndez M. . ( 2008;). Insights into the structure-function relationships of pneumococcal cell wall lysozymes, LytC and Cpl-1. J Biol Chem 283: 28618–28628 [CrossRef] [PubMed].
    [Google Scholar]
  42. Nascimento J. G. , Guerreiro-Pereira M. C. , Costa S. F. , São-José C. , Santos M. A. . ( 2008;). Nisin-triggered activity of Lys44, the secreted endolysin from Oenococcus oeni phage fOg44. J Bacteriol 190: 457–461 [CrossRef] [PubMed].
    [Google Scholar]
  43. Nelson D. , Loomis L. , Fischetti V. A. . ( 2001;). Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci U S A 98: 4107–4112 [CrossRef] [PubMed].
    [Google Scholar]
  44. Nelson D. , Schuch R. , Chahales P. , Zhu S. , Fischetti V. A. . ( 2006;). PlyC: a multimeric bacteriophage lysin. Proc Natl Acad Sci U S A 103: 10765–10770 [CrossRef] [PubMed].
    [Google Scholar]
  45. Nguyen H. M. , Kang C. . ( 2014;). Lysis delay and burst shrinkage of coliphage T7 by deletion of terminator Tφ reversed by deletion of early genes. J Virol 88: 2107–2115 [CrossRef] [PubMed].
    [Google Scholar]
  46. O'Flaherty S. , Ross R. P. , Coffey A. . ( 2009;). Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol Rev 33: 801–819 [CrossRef] [PubMed].
    [Google Scholar]
  47. Pang T. , Park T. , Young R. . ( 2010;). Mutational analysis of the S21 pinholin. Mol Microbiol 76: 68–77 [CrossRef] [PubMed].
    [Google Scholar]
  48. Pang T. , Fleming T. C. , Pogliano K. , Young R. . ( 2013;). Visualization of pinholin lesions in vivo . Proc Natl Acad Sci U S A 110: E2054–E2063 [CrossRef] [PubMed].
    [Google Scholar]
  49. Park T. , Struck D. K. , Deaton J. F. , Young R. . ( 2006;). Topological dynamics of holins in programmed bacterial lysis. Proc Natl Acad Sci U S A 103: 19713–19718 [CrossRef] [PubMed].
    [Google Scholar]
  50. Park T. , Struck D. K. , Dankenbring C. A. , Young R. . ( 2007;). The pinholin of lambdoid phage 21: control of lysis by membrane depolarization. J Bacteriol 189: 9135–9139 [CrossRef] [PubMed].
    [Google Scholar]
  51. Payne K. M. , Hatfull G. F. . ( 2012;). Mycobacteriophage endolysins: diverse and modular enzymes with multiple catalytic activities. PLoS One 7: e34052 [CrossRef] [PubMed].
    [Google Scholar]
  52. Pohane A. A. , Joshi H. , Jain V. . ( 2014;). Molecular dissection of phage endolysin: an interdomain interaction confers host specificity in Lysin A of Mycobacterium phage D29. J Biol Chem 289: 12085–12095 [CrossRef] [PubMed].
    [Google Scholar]
  53. Pohane A. A. , Patidar N. D. , Jain V. . ( 2015;). Modulation of domain-domain interaction and protein function by a charged linker: a case study of mycobacteriophage D29 endolysin. FEBS Lett 589: 695–701 [CrossRef] [PubMed].
    [Google Scholar]
  54. Porter C. J. , Schuch R. , Pelzek A. J. , Buckle A. M. , McGowan S. , Wilce M. C. , Rossjohn J. , Russell R. , Nelson D. , other authors . ( 2007;). The 1.6 Å crystal structure of the catalytic domain of PlyB, a bacteriophage lysin active against Bacillus anthracis . J Mol Biol 366: 540–550 [CrossRef] [PubMed].
    [Google Scholar]
  55. Reddy B. L. , Saier M. H. Jr . ( 2013;). Topological and phylogenetic analyses of bacterial holin families and superfamilies. Biochim Biophys Acta 1828: 2654–2671 [CrossRef] [PubMed].
    [Google Scholar]
  56. Resch G. , Moreillon P. , Fischetti V. A. . ( 2011;). A stable phage lysin (Cpl-1) dimer with increased antipneumococcal activity and decreased plasma clearance. Int J Antimicrob Agents 38: 516–521 [CrossRef] [PubMed].
    [Google Scholar]
  57. Ruggiero A. , Marasco D. , Squeglia F. , Soldini S. , Pedone E. , Pedone C. , Berisio R. . ( 2010;). Structure and functional regulation of RipA, a mycobacterial enzyme essential for daughter cell separation. Structure 18: 1184–1190 [CrossRef] [PubMed].
    [Google Scholar]
  58. Sadykov M. R. , Bayles K. W. . ( 2012;). The control of death and lysis in staphylococcal biofilms: a coordination of physiological signals. Curr Opin Microbiol 15: 211–215 [CrossRef] [PubMed].
    [Google Scholar]
  59. Sanz J. M. , Díaz E. , García J. L. . ( 1992;). Studies on the structure and function of the N-terminal domain of the pneumococcal murein hydrolases. Mol Microbiol 6: 921–931 [CrossRef] [PubMed].
    [Google Scholar]
  60. São-José C. , Parreira R. , Vieira G. , Santos M. A. . ( 2000;). The N-terminal region of the Oenococcus oeni bacteriophage fOg44 lysin behaves as a bona fide signal peptide in Escherichia coli and as a cis-inhibitory element, preventing lytic activity on oenococcal cells. J Bacteriol 182: 5823–5831 [CrossRef] [PubMed].
    [Google Scholar]
  61. Savva C. G. , Dewey J. S. , Moussa S. H. , To K. H. , Holzenburg A. , Young R. . ( 2014;). Stable micron-scale holes are a general feature of canonical holins. Mol Microbiol 91: 57–65 [CrossRef] [PubMed].
    [Google Scholar]
  62. Schuch R. , Nelson D. , Fischetti V. A. . ( 2002;). A bacteriolytic agent that detects and kills Bacillus anthracis . Nature 418: 884–889 [CrossRef] [PubMed].
    [Google Scholar]
  63. Shockman G. D. , Daneo-Moore L. , Kariyama R. , Massidda O. . ( 1996;). Bacterial walls, peptidoglycan hydrolases, autolysins, and autolysis. Microb Drug Resist 2: 95–98 [CrossRef] [PubMed].
    [Google Scholar]
  64. Smith T. J. , Blackman S. A. , Foster S. J. . ( 1996;). Peptidoglycan hydrolases of Bacillus subtilis 168. Microb Drug Resist 2: 113–118 [CrossRef] [PubMed].
    [Google Scholar]
  65. Steen A. , Buist G. , Leenhouts K. J. , El Khattabi M. , Grijpstra F. , Zomer A. L. , Venema G. , Kuipers O. P. , Kok J. . ( 2003;). Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem 278: 23874–23881 [CrossRef] [PubMed].
    [Google Scholar]
  66. Sudiarta I. P. , Fukushima T. , Sekiguchi J. . ( 2010;). Bacillus subtilis CwlP of the SP-β prophage has two novel peptidoglycan hydrolase domains, muramidase and cross-linkage digesting DD-endopeptidase. J Biol Chem 285: 41232–41243 [CrossRef] [PubMed].
    [Google Scholar]
  67. Sulakvelidze A. , Alavidze Z. , Morris J. G., Jr . ( 2001;). Bacteriophage therapy. Antimicrob Agents Chemother 45: 649–659 [CrossRef] [PubMed].
    [Google Scholar]
  68. Sun Q. , Kuty G. F. , Arockiasamy A. , Xu M. , Young R. , Sacchettini J. C. . ( 2009;). Regulation of a muralytic enzyme by dynamic membrane topology. Nat Struct Mol Biol 16: 1192–1194 [CrossRef] [PubMed].
    [Google Scholar]
  69. Tanaka S. , Clemons W. M., Jr . ( 2012;). Minimal requirements for inhibition of MraY by lysis protein E from bacteriophage ΦX174. Mol Microbiol 85: 975–985 [CrossRef] [PubMed].
    [Google Scholar]
  70. Ventura M. , Foley S. , Bruttin A. , Chennoufi S. C. , Canchaya C. , Brüssow H. . ( 2002;). Transcription mapping as a tool in phage genomics: the case of the temperate Streptococcus thermophilus phage Sfi21. Virology 296: 62–76 [CrossRef] [PubMed].
    [Google Scholar]
  71. Walmagh M. , Briers Y. , dos Santos S. B. , Azeredo J. , Lavigne R. . ( 2012;). Characterization of modular bacteriophage endolysins from Myoviridae phages OBP, 201φ2-1 and PVP-SE1. PLoS One 7: e36991 [CrossRef] [PubMed].
    [Google Scholar]
  72. Wang S. , Kong J. , Zhang X. . ( 2008;). Identification and characterization of the two-component cell lysis cassette encoded by temperate bacteriophage phiPYB5 of Lactobacillus fermentum . J Appl Microbiol 105: 1939–1944 [CrossRef] [PubMed].
    [Google Scholar]
  73. White R. , Chiba S. , Pang T. , Dewey J. S. , Savva C. G. , Holzenburg A. , Pogliano K. , Young R. . ( 2011;). Holin triggering in real time. Proc Natl Acad Sci U S A 108: 798–803 [CrossRef] [PubMed].
    [Google Scholar]
  74. Wittebole X. , De Roock S. , Opal S. M. . ( 2014;). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5: 226–235 [CrossRef] [PubMed].
    [Google Scholar]
  75. Xu M. , Struck D. K. , Deaton J. , Wang I. N. , Young R. . ( 2004;). A signal-arrest-release sequence mediates export and control of the phage P1 endolysin. Proc Natl Acad Sci U S A 101: 6415–6420 [CrossRef] [PubMed].
    [Google Scholar]
  76. Xu M. , Arulandu A. , Struck D. K. , Swanson S. , Sacchettini J. C. , Young R. . ( 2005;). Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme. Science 307: 113–117 [CrossRef] [PubMed].
    [Google Scholar]
  77. Yang D. C. , Tan K. , Joachimiak A. , Bernhardt T. G. . ( 2012;). A conformational switch controls cell wall-remodelling enzymes required for bacterial cell division. Mol Microbiol 85: 768–781 [CrossRef] [PubMed].
    [Google Scholar]
  78. Young R. . ( 2002;). Bacteriophage holins: deadly diversity. J Mol Microbiol Biotechnol 4: 21–36 [PubMed].
    [Google Scholar]
  79. Young R. . ( 2014;). Phage lysis: three steps, three choices, one outcome. J Microbiol 52: 243–258 [CrossRef] [PubMed].
    [Google Scholar]
  80. Young I. , Wang I. , Roof W. D. . ( 2000;). Phages will out: strategies of host cell lysis. Trends Microbiol 8: 120–128 [CrossRef] [PubMed].
    [Google Scholar]
  81. Zhang X. , Studier F. W. . ( 2004;). Multiple roles of T7 RNA polymerase and T7 lysozyme during bacteriophage T7 infection. J Mol Biol 340: 707–730 [CrossRef] [PubMed].
    [Google Scholar]
  82. Zheng Y. , Struck D. K. , Young R. . ( 2009;). Purification and functional characterization of phiX174 lysis protein E. Biochemistry 48: 4999–5006 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000190
Loading
/content/journal/micro/10.1099/mic.0.000190
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error