1887

Abstract

In the yeast , complex sphingolipids have three types of polar head group and five types of ceramide; however, the physiological significance of the structural diversity is not fully understood. Here, we report that deletion of vacuolar H-ATPase (V-ATPase) in yeast causes dramatic alteration of the complex sphingolipid composition, which includes decreases in hydroxylation at the C-4 position of long-chain bases and the C-2 position of fatty acids in the ceramide moiety, decreases in inositol phosphorylceramide (IPC) levels, and increases in mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP)C] levels. V-ATPase-deleted cells exhibited slow growth at pH 7.2, whereas the increase in MIPC levels was significantly enhanced when V-ATPase-deleted cells were incubated at pH 7.2. The protein expression levels of MIPC and M(IP)C synthases were significantly increased in V-ATPase-deleted cells incubated at pH 7.2. Loss of MIPC synthesis or an increase in the hydroxylation level of the ceramide moiety of sphingolipids on overexpression of Scs7 and Sur2 sphingolipid hydroxylases enhanced the growth defect of V-ATPase-deleted cells at pH 7.2. On the contrary, the growth rate of V-ATPase-deleted cells was moderately increased on the deletion of and . In addition, supersensitivities to Ca, Zn and HO, which are typical phenotypes of V-ATPase-deleted cells, were enhanced by the loss of MIPC synthesis. These results indicate the possibility that alteration of the complex sphingolipid composition is an adaptation mechanism for a defect of V-ATPase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000187
2015-12-01
2021-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2369.html?itemId=/content/journal/micro/10.1099/mic.0.000187&mimeType=html&fmt=ahah

References

  1. Baker Brachmann C., Davies A., Cost G. J., Caputo E., Li J., Hieter P., Boeke J. D. (1998). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applicationsYeast 14115132[PubMed].[CrossRef] [Google Scholar]
  2. Balguerie A., Bagnat M., Bonneu M., Aigle M., Breton A. M. (2002). Rvs161p and sphingolipids are required for actin repolarization following salt stressEukaryot Cell 110211031 [View Article][PubMed]. [Google Scholar]
  3. Beeler T. J., Fu D., Rivera J., Monaghan E., Gable K., Dunn T. M. (1997). SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2+ concentrations at 37°C, is required for mannosylation of inositolphosphorylceramideMol Gen Genet 255570579 [View Article][PubMed]. [Google Scholar]
  4. Beeler T., Bacikova D., Gable K., Hopkins L., Johnson C., Slife H., Dunn T. (1998). The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Δ mutantJ Biol Chem 2733068830694 [View Article][PubMed]. [Google Scholar]
  5. Breslow D. K., Collins S. R., Bodenmiller B., Aebersold R., Simons K., Shevchenko A., Ejsing C. S., Weissman J. S. (2010). Orm family proteins mediate sphingolipid homeostasisNature 46310481053 [View Article][PubMed]. [Google Scholar]
  6. Chung J. H., Lester R. L., Dickson R. C. (2003). Sphingolipid requirement for generation of a functional v1 component of the vacuolar ATPaseJ Biol Chem 2782887228881 [View Article][PubMed]. [Google Scholar]
  7. Clay L., Caudron F., Denoth-Lippuner A., Boettcher B., Buvelot Frei S., Snapp E. L., Barral Y. (2014). A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother celleLife 3e01883 [View Article][PubMed]. [Google Scholar]
  8. Davies S. A., Goodwin S. F., Kelly D. C., Wang Z., Sözen M. A., Kaiser K., Dow J. A. (1996). Analysis and inactivation of vha55, the gene encoding the vacuolar ATPase B-subunit in Drosophila melanogaster reveals a larval lethal phenotypeJ Biol Chem 2713067730684 [View Article][PubMed]. [Google Scholar]
  9. Dawson K., Toone W. M., Jones N., Wilkinson C. R. (2008). Loss of regulators of vacuolar ATPase function and ceramide synthesis results in multidrug sensitivity in Schizosaccharomyces pombe Eukaryot Cell 7926937 [View Article][PubMed]. [Google Scholar]
  10. Desfarges L., Durrens P., Juguelin H., Cassagne C., Bonneu M., Aigle M. (1993). Yeast mutants affected in viability upon starvation have a modified phospholipid compositionYeast 9267277 [View Article][PubMed]. [Google Scholar]
  11. Dickson R. C. (2008). Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeastJ Lipid Res 49909921 [View Article][PubMed]. [Google Scholar]
  12. Dickson R. C., Nagiec E. E., Wells G. B., Nagiec M. M., Lester R. L. (1997). Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) geneJ Biol Chem 2722962029625 [View Article][PubMed]. [Google Scholar]
  13. Dickson R. C., Sumanasekera C., Lester R. L. (2006). Functions and metabolism of sphingolipids in Saccharomyces cerevisiae Prog Lipid Res 45447465 [View Article][PubMed]. [Google Scholar]
  14. Eide D. J., Bridgham J. T., Zhao Z., Mattoon J. R. (1993). The vacuolar H+-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolismMol Gen Genet 241447456[PubMed]. [Google Scholar]
  15. Finnigan G. C., Ryan M., Stevens T. H. (2011). A genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomyces cerevisiae Genetics 187771783 [View Article][PubMed]. [Google Scholar]
  16. Haak D., Gable K., Beeler T., Dunn T. (1997). Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7pJ Biol Chem 2722970429710 [View Article][PubMed]. [Google Scholar]
  17. Hallstrom T. C., Lambert L., Schorling S., Balzi E., Goffeau A., Moye-Rowley W. S. (2001). Coordinate control of sphingolipid biosynthesis and multidrug resistance in Saccharomyces cerevisiae J Biol Chem 2762367423680 [View Article][PubMed]. [Google Scholar]
  18. Hanson B. A., Lester R. L. (1980). The extraction of inositol-containing phospholipids and phosphatidylcholine from Saccharomyces cerevisiae and Neurospora crassa J Lipid Res 21309315[PubMed]. [Google Scholar]
  19. Hechtberger P., Zinser E., Saf R., Hummel K., Paltauf F., Daum G. (1994). Characterization, quantification and subcellular localization of inositol-containing sphingolipids of the yeast, Saccharomyces cerevisiae Eur J Biochem 225641649 [View Article][PubMed]. [Google Scholar]
  20. Idkowiak-Baldys J., Grilley M. M., Takemoto J. Y. (2004). Sphingolipid C4 hydroxylation influences properties of yeast detergent-insoluble glycolipid-enriched membranesFEBS Lett 569272276 [View Article][PubMed]. [Google Scholar]
  21. Janke C., Magiera M. M., Rathfelder N., Taxis C., Reber S., Maekawa H., Moreno-Borchart A., Doenges G., Schwob E., other authors. (2004). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettesYeast 21947962 [View Article][PubMed]. [Google Scholar]
  22. Jenkins G. M., Richards A., Wahl T., Mao C., Obeid L., Hannun Y. (1997). Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae J Biol Chem 2723256632572 [View Article][PubMed]. [Google Scholar]
  23. Kawasaki-Nishi S., Bowers K., Nishi T., Forgac M., Stevens T. H. (2001). The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysisJ Biol Chem 2764741147420 [View Article][PubMed]. [Google Scholar]
  24. Lafourcade C., Sobo K., Kieffer-Jaquinod S., Garin J., van der Goot F. G. (2008). Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localizationPLoS One 3e2758 [View Article][PubMed]. [Google Scholar]
  25. Li S. C., Kane P. M. (2009). The yeast lysosome-like vacuole: endpoint and crossroadsBiochim Biophys Acta 1793650663 [View Article][PubMed]. [Google Scholar]
  26. Löfgren H., Pascher I. (1977). Molecular arrangements of sphingolipids. The monolayer behaviour of ceramidesChem Phys Lipids 20273284 [View Article][PubMed]. [Google Scholar]
  27. Milgrom E., Diab H., Middleton F., Kane P. M. (2007). Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stressJ Biol Chem 28271257136 [View Article][PubMed]. [Google Scholar]
  28. Montefusco D. J., Matmati N., Hannun Y. A. (2014). The yeast sphingolipid signaling landscapeChem Phys Lipids 1772640 [View Article][PubMed]. [Google Scholar]
  29. Morimoto Y., Tani M. (2015). Synthesis of mannosylinositol phosphorylceramides is involved in maintenance of cell integrity of yeast Saccharomyces cerevisiae Mol Microbiol 95706722 [View Article][PubMed]. [Google Scholar]
  30. Nagiec M. M., Nagiec E. E., Baltisberger J. A., Wells G. B., Lester R. L., Dickson R. C. (1997). Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 geneJ Biol Chem 27298099817 [View Article][PubMed]. [Google Scholar]
  31. Oh C. S., Toke D. A., Mandala S., Martin C. E. (1997). ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formationJ Biol Chem 2721737617384 [View Article][PubMed]. [Google Scholar]
  32. Plant P. J., Manolson M. F., Grinstein S., Demaurex N. (1999). Alternative mechanisms of vacuolar acidification in H+-ATPase-deficient yeastJ Biol Chem 2743727037279 [View Article][PubMed]. [Google Scholar]
  33. Roelants F. M., Baltz A. G., Trott A. E., Fereres S., Thorner J. (2010). A protein kinase network regulates the function of aminophospholipid flippasesProc Natl Acad Sci U S A 1073439 [View Article][PubMed]. [Google Scholar]
  34. Sikorski R. S., Hieter P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae Genetics 1221927[PubMed]. [Google Scholar]
  35. Simons K., Sampaio J. L. (2011). Membrane organization and lipid raftsCold Spring Harb Perspect Biol 3a004697 [View Article][PubMed]. [Google Scholar]
  36. Sun-Wada G., Murata Y., Yamamoto A., Kanazawa H., Wada Y., Futai M. (2000). Acidic endomembrane organelles are required for mouse postimplantation developmentDev Biol 228315325 [View Article][PubMed]. [Google Scholar]
  37. Tani M., Kuge O. (2010). Requirement of a specific group of sphingolipid-metabolizing enzyme for growth of yeast Saccharomyces cerevisiae under impaired metabolism of glycerophospholipidsMol Microbiol 78395413 [View Article][PubMed]. [Google Scholar]
  38. Tani M., Kuge O. (2012). Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae Mol Microbiol 8612621280 [View Article][PubMed]. [Google Scholar]
  39. Tani M., Kuge O. (2014). Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae Yeast 31145158 [View Article][PubMed]. [Google Scholar]
  40. Tani M., Kihara A., Igarashi Y. (2006). Rescue of cell growth by sphingosine with disruption of lipid microdomain formation in Saccharomyces cerevisiae deficient in sphingolipid biosynthesisBiochem J 394237242 [View Article][PubMed]. [Google Scholar]
  41. Tong A. H., Boone C. (2006). Synthetic genetic array analysis in Saccharomyces cerevisiae Methods Mol Biol 313171192[PubMed]. [Google Scholar]
  42. Toume M., Tani M. (2014). Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae FEMS Microbiol Lett 3586471 [View Article][PubMed]. [Google Scholar]
  43. Uemura S., Kihara A., Inokuchi J., Igarashi Y. (2003). Csg1p and newly identified Csh1p function in mannosylinositol phosphorylceramide synthesis by interacting with Csg2pJ Biol Chem 2784504945055 [View Article][PubMed]. [Google Scholar]
  44. Uemura S., Kihara A., Iwaki S., Inokuchi J., Igarashi Y. (2007). Regulation of the transport and protein levels of the inositol phosphorylceramide mannosyltransferases Csg1 and Csh1 by the Ca2+-binding protein Csg2J Biol Chem 28286138621 [View Article][PubMed]. [Google Scholar]
  45. Uemura S., Shishido F., Tani M., Mochizuki T., Abe F., Inokuchi J. I. (2014). Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in S. cerevisiae J Lipid Res 5513431356 [View Article][PubMed]. [Google Scholar]
  46. Wach A., Brachat A., Pöhlmann R., Philippsen P. (1994). New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae Yeast 1017931808 [View Article][PubMed]. [Google Scholar]
  47. Yamagata M., Obara K., Kihara A. (2013). Unperverted synthesis of complex sphingolipids is essential for cell survival under nitrogen starvationGenes Cells 18650659 [View Article][PubMed]. [Google Scholar]
  48. Yamaguchi T., Koga M., Fujita Y., Kimoto E. (1982). Effects of pH on membrane fluidity of human erythrocytesJ Biochem 9112991304[PubMed]. [Google Scholar]
  49. Yoshida K., Ohnishi M., Fukao Y., Okazaki Y., Fujiwara M., Song C., Nakanishi Y., Saito K., Shimmen T., other authors. (2013). Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteinsPlant Cell Physiol 5415711584 [View Article][PubMed]. [Google Scholar]
  50. Zhang Y. Q., Gamarra S., Garcia-Effron G., Park S., Perlin D. S., Rao R. (2010). Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugsPLoS Pathog 6e1000939 [View Article][PubMed]. [Google Scholar]
  51. Zhao C., Beeler T., Dunn T. (1994). Suppressors of the Ca2+-sensitive yeast mutant (csg2) identify genes involved in sphingolipid biosynthesis. Cloning and characterization of SCS1, a gene required for serine palmitoyltransferase activityJ Biol Chem 2692148021488[PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000187
Loading
/content/journal/micro/10.1099/mic.0.000187
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error