1887

Abstract

In the yeast , complex sphingolipids have three types of polar head group and five types of ceramide; however, the physiological significance of the structural diversity is not fully understood. Here, we report that deletion of vacuolar H-ATPase (V-ATPase) in yeast causes dramatic alteration of the complex sphingolipid composition, which includes decreases in hydroxylation at the C-4 position of long-chain bases and the C-2 position of fatty acids in the ceramide moiety, decreases in inositol phosphorylceramide (IPC) levels, and increases in mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP)C] levels. V-ATPase-deleted cells exhibited slow growth at pH 7.2, whereas the increase in MIPC levels was significantly enhanced when V-ATPase-deleted cells were incubated at pH 7.2. The protein expression levels of MIPC and M(IP)C synthases were significantly increased in V-ATPase-deleted cells incubated at pH 7.2. Loss of MIPC synthesis or an increase in the hydroxylation level of the ceramide moiety of sphingolipids on overexpression of Scs7 and Sur2 sphingolipid hydroxylases enhanced the growth defect of V-ATPase-deleted cells at pH 7.2. On the contrary, the growth rate of V-ATPase-deleted cells was moderately increased on the deletion of and . In addition, supersensitivities to Ca, Zn and HO, which are typical phenotypes of V-ATPase-deleted cells, were enhanced by the loss of MIPC synthesis. These results indicate the possibility that alteration of the complex sphingolipid composition is an adaptation mechanism for a defect of V-ATPase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000187
2015-12-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2369.html?itemId=/content/journal/micro/10.1099/mic.0.000187&mimeType=html&fmt=ahah

References

  1. Baker Brachmann C. , Davies A. , Cost G. J. , Caputo E. , Li J. , Hieter P. , Boeke J. D. . ( 1998;). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115–132 [PubMed].[CrossRef]
    [Google Scholar]
  2. Balguerie A. , Bagnat M. , Bonneu M. , Aigle M. , Breton A. M. . ( 2002;). Rvs161p and sphingolipids are required for actin repolarization following salt stress. Eukaryot Cell 1: 1021–1031 [CrossRef] [PubMed].
    [Google Scholar]
  3. Beeler T. J. , Fu D. , Rivera J. , Monaghan E. , Gable K. , Dunn T. M. . ( 1997;). SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2+ concentrations at 37°C, is required for mannosylation of inositolphosphorylceramide. Mol Gen Genet 255: 570–579 [CrossRef] [PubMed].
    [Google Scholar]
  4. Beeler T. , Bacikova D. , Gable K. , Hopkins L. , Johnson C. , Slife H. , Dunn T. . ( 1998;). The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Δ mutant. J Biol Chem 273: 30688–30694 [CrossRef] [PubMed].
    [Google Scholar]
  5. Breslow D. K. , Collins S. R. , Bodenmiller B. , Aebersold R. , Simons K. , Shevchenko A. , Ejsing C. S. , Weissman J. S. . ( 2010;). Orm family proteins mediate sphingolipid homeostasis. Nature 463: 1048–1053 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chung J. H. , Lester R. L. , Dickson R. C. . ( 2003;). Sphingolipid requirement for generation of a functional v1 component of the vacuolar ATPase. J Biol Chem 278: 28872–28881 [CrossRef] [PubMed].
    [Google Scholar]
  7. Clay L. , Caudron F. , Denoth-Lippuner A. , Boettcher B. , Buvelot Frei S. , Snapp E. L. , Barral Y. . ( 2014;). A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. eLife 3: e01883 [CrossRef] [PubMed].
    [Google Scholar]
  8. Davies S. A. , Goodwin S. F. , Kelly D. C. , Wang Z. , Sözen M. A. , Kaiser K. , Dow J. A. . ( 1996;). Analysis and inactivation of vha55, the gene encoding the vacuolar ATPase B-subunit in Drosophila melanogaster reveals a larval lethal phenotype. J Biol Chem 271: 30677–30684 [CrossRef] [PubMed].
    [Google Scholar]
  9. Dawson K. , Toone W. M. , Jones N. , Wilkinson C. R. . ( 2008;). Loss of regulators of vacuolar ATPase function and ceramide synthesis results in multidrug sensitivity in Schizosaccharomyces pombe . Eukaryot Cell 7: 926–937 [CrossRef] [PubMed].
    [Google Scholar]
  10. Desfarges L. , Durrens P. , Juguelin H. , Cassagne C. , Bonneu M. , Aigle M. . ( 1993;). Yeast mutants affected in viability upon starvation have a modified phospholipid composition. Yeast 9: 267–277 [CrossRef] [PubMed].
    [Google Scholar]
  11. Dickson R. C. . ( 2008;). Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J Lipid Res 49: 909–921 [CrossRef] [PubMed].
    [Google Scholar]
  12. Dickson R. C. , Nagiec E. E. , Wells G. B. , Nagiec M. M. , Lester R. L. . ( 1997;). Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene. J Biol Chem 272: 29620–29625 [CrossRef] [PubMed].
    [Google Scholar]
  13. Dickson R. C. , Sumanasekera C. , Lester R. L. . ( 2006;). Functions and metabolism of sphingolipids in Saccharomyces cerevisiae . Prog Lipid Res 45: 447–465 [CrossRef] [PubMed].
    [Google Scholar]
  14. Eide D. J. , Bridgham J. T. , Zhao Z. , Mattoon J. R. . ( 1993;). The vacuolar H+-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. Mol Gen Genet 241: 447–456 [PubMed].
    [Google Scholar]
  15. Finnigan G. C. , Ryan M. , Stevens T. H. . ( 2011;). A genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomyces cerevisiae . Genetics 187: 771–783 [CrossRef] [PubMed].
    [Google Scholar]
  16. Haak D. , Gable K. , Beeler T. , Dunn T. . ( 1997;). Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J Biol Chem 272: 29704–29710 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hallstrom T. C. , Lambert L. , Schorling S. , Balzi E. , Goffeau A. , Moye-Rowley W. S. . ( 2001;). Coordinate control of sphingolipid biosynthesis and multidrug resistance in Saccharomyces cerevisiae . J Biol Chem 276: 23674–23680 [CrossRef] [PubMed].
    [Google Scholar]
  18. Hanson B. A. , Lester R. L. . ( 1980;). The extraction of inositol-containing phospholipids and phosphatidylcholine from Saccharomyces cerevisiae and Neurospora crassa . J Lipid Res 21: 309–315 [PubMed].
    [Google Scholar]
  19. Hechtberger P. , Zinser E. , Saf R. , Hummel K. , Paltauf F. , Daum G. . ( 1994;). Characterization, quantification and subcellular localization of inositol-containing sphingolipids of the yeast, Saccharomyces cerevisiae . Eur J Biochem 225: 641–649 [CrossRef] [PubMed].
    [Google Scholar]
  20. Idkowiak-Baldys J. , Grilley M. M. , Takemoto J. Y. . ( 2004;). Sphingolipid C4 hydroxylation influences properties of yeast detergent-insoluble glycolipid-enriched membranes. FEBS Lett 569: 272–276 [CrossRef] [PubMed].
    [Google Scholar]
  21. Janke C. , Magiera M. M. , Rathfelder N. , Taxis C. , Reber S. , Maekawa H. , Moreno-Borchart A. , Doenges G. , Schwob E. , other authors . ( 2004;). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947–962 [CrossRef] [PubMed].
    [Google Scholar]
  22. Jenkins G. M. , Richards A. , Wahl T. , Mao C. , Obeid L. , Hannun Y. . ( 1997;). Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae . J Biol Chem 272: 32566–32572 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kawasaki-Nishi S. , Bowers K. , Nishi T. , Forgac M. , Stevens T. H. . ( 2001;). The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276: 47411–47420 [CrossRef] [PubMed].
    [Google Scholar]
  24. Lafourcade C. , Sobo K. , Kieffer-Jaquinod S. , Garin J. , van der Goot F. G. . ( 2008;). Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. PLoS One 3: e2758 [CrossRef] [PubMed].
    [Google Scholar]
  25. Li S. C. , Kane P. M. . ( 2009;). The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793: 650–663 [CrossRef] [PubMed].
    [Google Scholar]
  26. Löfgren H. , Pascher I. . ( 1977;). Molecular arrangements of sphingolipids. The monolayer behaviour of ceramides. Chem Phys Lipids 20: 273–284 [CrossRef] [PubMed].
    [Google Scholar]
  27. Milgrom E. , Diab H. , Middleton F. , Kane P. M. . ( 2007;). Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress. J Biol Chem 282: 7125–7136 [CrossRef] [PubMed].
    [Google Scholar]
  28. Montefusco D. J. , Matmati N. , Hannun Y. A. . ( 2014;). The yeast sphingolipid signaling landscape. Chem Phys Lipids 177: 26–40 [CrossRef] [PubMed].
    [Google Scholar]
  29. Morimoto Y. , Tani M. . ( 2015;). Synthesis of mannosylinositol phosphorylceramides is involved in maintenance of cell integrity of yeast Saccharomyces cerevisiae . Mol Microbiol 95: 706–722 [CrossRef] [PubMed].
    [Google Scholar]
  30. Nagiec M. M. , Nagiec E. E. , Baltisberger J. A. , Wells G. B. , Lester R. L. , Dickson R. C. . ( 1997;). Sphingolipid synthesis as a target for antifungal drugs. Complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J Biol Chem 272: 9809–9817 [CrossRef] [PubMed].
    [Google Scholar]
  31. Oh C. S. , Toke D. A. , Mandala S. , Martin C. E. . ( 1997;). ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J Biol Chem 272: 17376–17384 [CrossRef] [PubMed].
    [Google Scholar]
  32. Plant P. J. , Manolson M. F. , Grinstein S. , Demaurex N. . ( 1999;). Alternative mechanisms of vacuolar acidification in H+-ATPase-deficient yeast. J Biol Chem 274: 37270–37279 [CrossRef] [PubMed].
    [Google Scholar]
  33. Roelants F. M. , Baltz A. G. , Trott A. E. , Fereres S. , Thorner J. . ( 2010;). A protein kinase network regulates the function of aminophospholipid flippases. Proc Natl Acad Sci U S A 107: 34–39 [CrossRef] [PubMed].
    [Google Scholar]
  34. Sikorski R. S. , Hieter P. . ( 1989;). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae . Genetics 122: 19–27 [PubMed].
    [Google Scholar]
  35. Simons K. , Sampaio J. L. . ( 2011;). Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3: a004697 [CrossRef] [PubMed].
    [Google Scholar]
  36. Sun-Wada G. , Murata Y. , Yamamoto A. , Kanazawa H. , Wada Y. , Futai M. . ( 2000;). Acidic endomembrane organelles are required for mouse postimplantation development. Dev Biol 228: 315–325 [CrossRef] [PubMed].
    [Google Scholar]
  37. Tani M. , Kuge O. . ( 2010;). Requirement of a specific group of sphingolipid-metabolizing enzyme for growth of yeast Saccharomyces cerevisiae under impaired metabolism of glycerophospholipids. Mol Microbiol 78: 395–413 [CrossRef] [PubMed].
    [Google Scholar]
  38. Tani M. , Kuge O. . ( 2012;). Involvement of complex sphingolipids and phosphatidylserine in endosomal trafficking in yeast Saccharomyces cerevisiae . Mol Microbiol 86: 1262–1280 [CrossRef] [PubMed].
    [Google Scholar]
  39. Tani M. , Kuge O. . ( 2014;). Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae . Yeast 31: 145–158 [CrossRef] [PubMed].
    [Google Scholar]
  40. Tani M. , Kihara A. , Igarashi Y. . ( 2006;). Rescue of cell growth by sphingosine with disruption of lipid microdomain formation in Saccharomyces cerevisiae deficient in sphingolipid biosynthesis. Biochem J 394: 237–242 [CrossRef] [PubMed].
    [Google Scholar]
  41. Tong A. H. , Boone C. . ( 2006;). Synthetic genetic array analysis in Saccharomyces cerevisiae . Methods Mol Biol 313: 171–192 [PubMed].
    [Google Scholar]
  42. Toume M. , Tani M. . ( 2014;). Change in activity of serine palmitoyltransferase affects sensitivity to syringomycin E in yeast Saccharomyces cerevisiae . FEMS Microbiol Lett 358: 64–71 [CrossRef] [PubMed].
    [Google Scholar]
  43. Uemura S. , Kihara A. , Inokuchi J. , Igarashi Y. . ( 2003;). Csg1p and newly identified Csh1p function in mannosylinositol phosphorylceramide synthesis by interacting with Csg2p. J Biol Chem 278: 45049–45055 [CrossRef] [PubMed].
    [Google Scholar]
  44. Uemura S. , Kihara A. , Iwaki S. , Inokuchi J. , Igarashi Y. . ( 2007;). Regulation of the transport and protein levels of the inositol phosphorylceramide mannosyltransferases Csg1 and Csh1 by the Ca2+-binding protein Csg2. J Biol Chem 282: 8613–8621 [CrossRef] [PubMed].
    [Google Scholar]
  45. Uemura S. , Shishido F. , Tani M. , Mochizuki T. , Abe F. , Inokuchi J. I. . ( 2014;). Loss of hydroxyl groups from the ceramide moiety can modify the lateral diffusion of membrane proteins in S. cerevisiae . J Lipid Res 55: 1343–1356 [CrossRef] [PubMed].
    [Google Scholar]
  46. Wach A. , Brachat A. , Pöhlmann R. , Philippsen P. . ( 1994;). New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae . Yeast 10: 1793–1808 [CrossRef] [PubMed].
    [Google Scholar]
  47. Yamagata M. , Obara K. , Kihara A. . ( 2013;). Unperverted synthesis of complex sphingolipids is essential for cell survival under nitrogen starvation. Genes Cells 18: 650–659 [CrossRef] [PubMed].
    [Google Scholar]
  48. Yamaguchi T. , Koga M. , Fujita Y. , Kimoto E. . ( 1982;). Effects of pH on membrane fluidity of human erythrocytes. J Biochem 91: 1299–1304 [PubMed].
    [Google Scholar]
  49. Yoshida K. , Ohnishi M. , Fukao Y. , Okazaki Y. , Fujiwara M. , Song C. , Nakanishi Y. , Saito K. , Shimmen T. , other authors . ( 2013;). Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins. Plant Cell Physiol 54: 1571–1584 [CrossRef] [PubMed].
    [Google Scholar]
  50. Zhang Y. Q. , Gamarra S. , Garcia-Effron G. , Park S. , Perlin D. S. , Rao R. . ( 2010;). Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog 6: e1000939 [CrossRef] [PubMed].
    [Google Scholar]
  51. Zhao C. , Beeler T. , Dunn T. . ( 1994;). Suppressors of the Ca2+-sensitive yeast mutant (csg2) identify genes involved in sphingolipid biosynthesis. Cloning and characterization of SCS1, a gene required for serine palmitoyltransferase activity. J Biol Chem 269: 21480–21488 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000187
Loading
/content/journal/micro/10.1099/mic.0.000187
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error