1887

Abstract

HU proteins have an important architectural role in nucleoid organization in bacteria. Compared with HU of many bacteria, HU proteins from species possess an N-terminal lysine-rich extension similar to the eukaryotic histone H1 C-terminal domain involved in DNA compaction. The single HU gene in , encoding DrHU, is required for nucleoid compaction and cell viability. contains three expressed HU genes, encoding DdHU1, DdHU2 and DdHU3. Here, we show that either DdHU1 or DdHU2 is essential in . DdHU1 and DdHU2, but not DdHU3, can substitute for DrHU in , indicating that DdHU3 may have a non-essential function different from DdHU1, DdHU2 and DrHU. Interestingly, the highly abundant DrHU and DdHU1 proteins, and also the less expressed DdHU2, are translated in from leaderless mRNAs, which lack a 5′-untranslated region and, hence, the Shine–Dalgarno sequence. Unexpectedly, cloning the DrHU or DdHU1 gene under control of a strong promoter in an expression plasmid, which results in leadered transcripts, strongly reduced the DrHU and DdHU1 protein level in compared with that obtained from the natural leaderless gene. We also show that the start codon position for DrHU and DdHU1 should be reannotated, resulting in proteins that are 15 and 4 aa residues shorter than initially reported. The expression level and start codon correction were crucial for functional characterization of HU in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000186
2015-12-01
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2410.html?itemId=/content/journal/micro/10.1099/mic.0.000186&mimeType=html&fmt=ahah

References

  1. Baudet M., Ortet P., Gaillard J. C., Fernandez B., Guérin P., Enjalbal C., Subra G., de Groot A., Barakat M., other authors. (2010). Proteomics-based refinement of Deinococcus deserti genome annotation reveals an unwonted use of non-canonical translation initiation codonsMol Cell Proteomics 9415426 [View Article][PubMed]. [Google Scholar]
  2. Benelli D., Londei P. (2009). Begin at the beginning: evolution of translational initiationRes Microbiol 160493501 [View Article][PubMed]. [Google Scholar]
  3. Bharath M. M., Ramesh S., Chandra N. R., Rao M. R. (2002). Identification of a 34 amino acid stretch within the C-terminus of histone H1 as the DNA-condensing domain by site-directed mutagenesisBiochemistry 4176177627 [View Article][PubMed]. [Google Scholar]
  4. Bonacossa de Almeida C., Coste G., Sommer S., Bailone A. (2002). Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulationMol Genet Genomics 2682841 [View Article][PubMed]. [Google Scholar]
  5. Bouthier de la Tour C. B., Passot F. M., Toueille M., Mirabella B., Guérin P., Blanchard L., Servant P., de Groot A., Sommer S., Armengaud J. (2013). Comparative proteomics reveals key proteins recruited at the nucleoid of Deinococcus after irradiation-induced DNA damageProteomics 1334573469 [View Article][PubMed]. [Google Scholar]
  6. Brock J. E., Pourshahian S., Giliberti J., Limbach P. A., Janssen G. R. (2008). Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5′-terminal AUGRNA 1421592169 [View Article][PubMed]. [Google Scholar]
  7. Byrgazov K., Vesper O., Moll I. (2013). Ribosome heterogeneity: another level of complexity in bacterial translation regulationCurr Opin Microbiol 16133139 [View Article][PubMed]. [Google Scholar]
  8. de Groot A., Dulermo R., Ortet P., Blanchard L., Guérin P., Fernandez B., Vacherie B., Dossat C., Jolivet E., other authors. (2009). Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus desertiPLoS Genet 5e1000434 [View Article][PubMed]. [Google Scholar]
  9. de Groot A., Roche D., Fernandez B., Ludanyi M., Cruveiller S., Pignol D., Vallenet D., Armengaud J., Blanchard L. (2014). RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus desertiGenome Biol Evol 6932948 [View Article][PubMed]. [Google Scholar]
  10. Dillon S. C., Dorman C. J. (2010). Bacterial nucleoid-associated proteins, nucleoid structure and gene expressionNat Rev Microbiol 8185195 [View Article][PubMed]. [Google Scholar]
  11. Dulermo R., Fochesato S., Blanchard L., de Groot A. (2009). Mutagenic lesion bypass and two functionally different RecA proteins in Deinococcus desertiMol Microbiol 74194208 [View Article][PubMed]. [Google Scholar]
  12. Ghosh S., Grove A. (2004). Histone-like protein HU from Deinococcus radiodurans binds preferentially to four-way DNA junctionsJ Mol Biol 337561571 [View Article][PubMed]. [Google Scholar]
  13. Ghosh S., Grove A. (2006). The Deinococcus radiodurans-encoded HU protein has two DNA-binding domainsBiochemistry 4517231733 [View Article][PubMed]. [Google Scholar]
  14. Grove A. (2011). Functional evolution of bacterial histone-like HU proteinsCurr Issues Mol Biol 13112[PubMed]. [Google Scholar]
  15. Hansen M. T. (1978). Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radioduransJ Bacteriol 1347175[PubMed]. [Google Scholar]
  16. Hartmann E. M., Armengaud J. (2014). N-terminomics and proteogenomics, getting off to a good startProteomics 1426372646 [View Article][PubMed]. [Google Scholar]
  17. Hering O., Brenneis M., Beer J., Suess B., Soppa J. (2009). A novel mechanism for translation initiation operates in haloarchaeaMol Microbiol 7114511463 [View Article][PubMed]. [Google Scholar]
  18. Kawamura S., Kakuta Y., Tanaka I., Hikichi K., Kuhara S., Yamasaki N., Kimura M. (1996). Glycine-15 in the bend between two alpha-helices can explain the thermostability of DNA binding protein HU from Bacillus stearothermophilusBiochemistry 3511951200 [View Article][PubMed]. [Google Scholar]
  19. Kumar S., Sardesai A. A., Basu D., Muniyappa K., Hasnain S. E. (2010). DNA clasping by mycobacterial HU: the C-terminal region of HupB mediates increased specificity of DNA bindingPLoS One 5e12551 [View Article][PubMed]. [Google Scholar]
  20. Lecointe F., Coste G., Sommer S., Bailone A. (2004). Vectors for regulated gene expression in the radioresistant bacterium Deinococcus radioduransGene 3362535 [View Article][PubMed]. [Google Scholar]
  21. Levin-Zaidman S., Englander J., Shimoni E., Sharma A. K., Minton K. W., Minsky A. (2003). Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance?Science 299254256 [View Article][PubMed]. [Google Scholar]
  22. Ludanyi M., Blanchard L., Dulermo R., Brandelet G., Bellanger L., Pignol D., Lemaire D., de Groot A. (2014). Radiation response in Deinococcus deserti: IrrE is a metalloprotease that cleaves repressor protein DdrOMol Microbiol 94434449 [View Article][PubMed]. [Google Scholar]
  23. Luijsterburg M. S., Noom M. C., Wuite G. J., Dame R. T. (2006). The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspectiveJ Struct Biol 156262272 [View Article][PubMed]. [Google Scholar]
  24. Malys N., McCarthy J. E. (2011). Translation initiation: variations in the mechanism can be anticipatedCell Mol Life Sci 689911003 [View Article][PubMed]. [Google Scholar]
  25. Mennecier S., Coste G., Servant P., Bailone A., Sommer S. (2004). Mismatch repair ensures fidelity of replication and recombination in the radioresistant organism Deinococcus radioduransMol Genet Genomics 272460469 [View Article][PubMed]. [Google Scholar]
  26. Moll I., Grill S., Gualerzi C. O., Bläsi U. (2002). Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational controlMol Microbiol 43239246 [View Article][PubMed]. [Google Scholar]
  27. Mukherjee A., Bhattacharyya G., Grove A. (2008). The C-terminal domain of HU-related histone-like protein Hlp from Mycobacterium smegmatis mediates DNA end-joiningBiochemistry 4787448753 [View Article][PubMed]. [Google Scholar]
  28. Nguyen H. H., de la Tour C. B., Toueille M., Vannier F., Sommer S., Servant P. (2009). The essential histone-like protein HU plays a major role in Deinococcus radiodurans nucleoid compactionMol Microbiol 73240252 [View Article][PubMed]. [Google Scholar]
  29. Norais C., Servant P., Bouthier-de-la-Tour C., Coureux P. D., Ithurbide S., Vannier F., Guerin P. P., Dulberger C. L., Satyshur K. A., other authors. (2013). The Deinococcus radiodurans DR1245 protein, a DdrB partner homologous to YbjN proteins and reminiscent of type III secretion system chaperonesPLoS One 8e56558 [View Article][PubMed]. [Google Scholar]
  30. O'Donnell S. M., Janssen G. R. (2001). The initiation codon affects ribosome binding and translational efficiency in Escherichia coli of cI mRNA with or without the 5′ untranslated leaderJ Bacteriol 18312771283 [View Article][PubMed]. [Google Scholar]
  31. O'Donnell S. M., Janssen G. R. (2002). Leaderless mRNAs bind 70S ribosomes more strongly than 30S ribosomal subunits in Escherichia coliJ Bacteriol 18467306733 [View Article][PubMed]. [Google Scholar]
  32. Schiza V., Molina-Serrano D., Kyriakou D., Hadjiantoniou A., Kirmizis A. (2013). N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencingPLoS Genet 9e1003805 [View Article][PubMed]. [Google Scholar]
  33. Sharadamma N., Khan K., Kumar S., Patil K. N., Hasnain S. E., Muniyappa K. (2011). Synergy between the N-terminal and C-terminal domains of Mycobacterium tuberculosis HupB is essential for high-affinity binding, DNA supercoiling and inhibition of RecA-promoted strand exchangeFEBS J 27834473462 [View Article][PubMed]. [Google Scholar]
  34. Tillett D., Burns B. P., Neilan B. A. (2000). Optimized rapid amplification of cDNA ends (RACE) for mapping bacterial mRNA transcriptsBiotechniques 28448, 450, 452453, 456[PubMed]. [Google Scholar]
  35. Toueille M., Mirabella B., Guérin P., Bouthier de la Tour C., Boisnard S., Nguyen H. H., Blanchard L., Servant P., de Groot A., other authors. (2012). A comparative proteomic approach to better define Deinococcus nucleoid specificitiesJ Proteomics 7525882600 [View Article][PubMed]. [Google Scholar]
  36. Van Etten W. J., Janssen G. R. (1998). An AUG initiation codon, not codon-anticodon complementarity, is required for the translation of unleadered mRNA in Escherichia coliMol Microbiol 279871001 [View Article][PubMed]. [Google Scholar]
  37. Vujičić-Zagar A., Dulermo R., Le Gorrec M., Vannier F., Servant P., Sommer S., de Groot A., Serre L. (2009). Crystal structure of the IrrE protein, a central regulator of DNA damage repair in DeinococcaceaeJ Mol Biol 386704716 [View Article][PubMed]. [Google Scholar]
  38. Yee B., Sagulenko E., Fuerst J. A. (2011). Making heads or tails of the HU proteins in the planctomycete Gemmata obscuriglobusMicrobiology 15720122021 [View Article][PubMed]. [Google Scholar]
  39. Zheng X., Hu G. Q., She Z. S., Zhu H. (2011). Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotesBMC Genomics 12361 [View Article][PubMed]. [Google Scholar]
  40. Zimmerman J. M., Battista J. R. (2005). A ring-like nucleoid is not necessary for radioresistance in the DeinococcaceaeBMC Microbiol 517 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000186
Loading
/content/journal/micro/10.1099/mic.0.000186
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error