1887

Abstract

HU proteins have an important architectural role in nucleoid organization in bacteria. Compared with HU of many bacteria, HU proteins from species possess an N-terminal lysine-rich extension similar to the eukaryotic histone H1 C-terminal domain involved in DNA compaction. The single HU gene in , encoding DrHU, is required for nucleoid compaction and cell viability. contains three expressed HU genes, encoding DdHU1, DdHU2 and DdHU3. Here, we show that either DdHU1 or DdHU2 is essential in . DdHU1 and DdHU2, but not DdHU3, can substitute for DrHU in , indicating that DdHU3 may have a non-essential function different from DdHU1, DdHU2 and DrHU. Interestingly, the highly abundant DrHU and DdHU1 proteins, and also the less expressed DdHU2, are translated in from leaderless mRNAs, which lack a 5′-untranslated region and, hence, the Shine–Dalgarno sequence. Unexpectedly, cloning the DrHU or DdHU1 gene under control of a strong promoter in an expression plasmid, which results in leadered transcripts, strongly reduced the DrHU and DdHU1 protein level in compared with that obtained from the natural leaderless gene. We also show that the start codon position for DrHU and DdHU1 should be reannotated, resulting in proteins that are 15 and 4 aa residues shorter than initially reported. The expression level and start codon correction were crucial for functional characterization of HU in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000186
2015-12-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2410.html?itemId=/content/journal/micro/10.1099/mic.0.000186&mimeType=html&fmt=ahah

References

  1. Baudet M., Ortet P., Gaillard J. C., Fernandez B., Guérin P., Enjalbal C., Subra G., de Groot A., Barakat M., other authors. ( 2010;). Proteomics-based refinement of Deinococcus deserti genome annotation reveals an unwonted use of non-canonical translation initiation codons. Mol Cell Proteomics 9: 415–426 [CrossRef] [PubMed].
    [Google Scholar]
  2. Benelli D., Londei P.. ( 2009;). Begin at the beginning: evolution of translational initiation. Res Microbiol 160: 493–501 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bharath M. M., Ramesh S., Chandra N. R., Rao M. R.. ( 2002;). Identification of a 34 amino acid stretch within the C-terminus of histone H1 as the DNA-condensing domain by site-directed mutagenesis. Biochemistry 41: 7617–7627 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bonacossa de Almeida C., Coste G., Sommer S., Bailone A.. ( 2002;). Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Mol Genet Genomics 268: 28–41 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bouthier de la Tour C. B., Passot F. M., Toueille M., Mirabella B., Guérin P., Blanchard L., Servant P., de Groot A., Sommer S., Armengaud J.. ( 2013;). Comparative proteomics reveals key proteins recruited at the nucleoid of Deinococcus after irradiation-induced DNA damage. Proteomics 13: 3457–3469 [CrossRef] [PubMed].
    [Google Scholar]
  6. Brock J. E., Pourshahian S., Giliberti J., Limbach P. A., Janssen G. R.. ( 2008;). Ribosomes bind leaderless mRNA in Escherichia coli through recognition of their 5′-terminal AUG. RNA 14: 2159–2169 [CrossRef] [PubMed].
    [Google Scholar]
  7. Byrgazov K., Vesper O., Moll I.. ( 2013;). Ribosome heterogeneity: another level of complexity in bacterial translation regulation. Curr Opin Microbiol 16: 133–139 [CrossRef] [PubMed].
    [Google Scholar]
  8. de Groot A., Dulermo R., Ortet P., Blanchard L., Guérin P., Fernandez B., Vacherie B., Dossat C., Jolivet E., other authors. ( 2009;). Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti. PLoS Genet 5: e1000434 [CrossRef] [PubMed].
    [Google Scholar]
  9. de Groot A., Roche D., Fernandez B., Ludanyi M., Cruveiller S., Pignol D., Vallenet D., Armengaud J., Blanchard L.. ( 2014;). RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus deserti. Genome Biol Evol 6: 932–948 [CrossRef] [PubMed].
    [Google Scholar]
  10. Dillon S. C., Dorman C. J.. ( 2010;). Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8: 185–195 [CrossRef] [PubMed].
    [Google Scholar]
  11. Dulermo R., Fochesato S., Blanchard L., de Groot A.. ( 2009;). Mutagenic lesion bypass and two functionally different RecA proteins in Deinococcus deserti. Mol Microbiol 74: 194–208 [CrossRef] [PubMed].
    [Google Scholar]
  12. Ghosh S., Grove A.. ( 2004;). Histone-like protein HU from Deinococcus radiodurans binds preferentially to four-way DNA junctions. J Mol Biol 337: 561–571 [CrossRef] [PubMed].
    [Google Scholar]
  13. Ghosh S., Grove A.. ( 2006;). The Deinococcus radiodurans-encoded HU protein has two DNA-binding domains. Biochemistry 45: 1723–1733 [CrossRef] [PubMed].
    [Google Scholar]
  14. Grove A.. ( 2011;). Functional evolution of bacterial histone-like HU proteins. Curr Issues Mol Biol 13: 1–12 [PubMed].
    [Google Scholar]
  15. Hansen M. T.. ( 1978;). Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J Bacteriol 134: 71–75 [PubMed].
    [Google Scholar]
  16. Hartmann E. M., Armengaud J.. ( 2014;). N-terminomics and proteogenomics, getting off to a good start. Proteomics 14: 2637–2646 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hering O., Brenneis M., Beer J., Suess B., Soppa J.. ( 2009;). A novel mechanism for translation initiation operates in haloarchaea. Mol Microbiol 71: 1451–1463 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kawamura S., Kakuta Y., Tanaka I., Hikichi K., Kuhara S., Yamasaki N., Kimura M.. ( 1996;). Glycine-15 in the bend between two alpha-helices can explain the thermostability of DNA binding protein HU from Bacillus stearothermophilus. Biochemistry 35: 1195–1200 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kumar S., Sardesai A. A., Basu D., Muniyappa K., Hasnain S. E.. ( 2010;). DNA clasping by mycobacterial HU: the C-terminal region of HupB mediates increased specificity of DNA binding. PLoS One 5: e12551 [CrossRef] [PubMed].
    [Google Scholar]
  20. Lecointe F., Coste G., Sommer S., Bailone A.. ( 2004;). Vectors for regulated gene expression in the radioresistant bacterium Deinococcus radiodurans. Gene 336: 25–35 [CrossRef] [PubMed].
    [Google Scholar]
  21. Levin-Zaidman S., Englander J., Shimoni E., Sharma A. K., Minton K. W., Minsky A.. ( 2003;). Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance?. Science 299: 254–256 [CrossRef] [PubMed].
    [Google Scholar]
  22. Ludanyi M., Blanchard L., Dulermo R., Brandelet G., Bellanger L., Pignol D., Lemaire D., de Groot A.. ( 2014;). Radiation response in Deinococcus deserti: IrrE is a metalloprotease that cleaves repressor protein DdrO. Mol Microbiol 94: 434–449 [CrossRef] [PubMed].
    [Google Scholar]
  23. Luijsterburg M. S., Noom M. C., Wuite G. J., Dame R. T.. ( 2006;). The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J Struct Biol 156: 262–272 [CrossRef] [PubMed].
    [Google Scholar]
  24. Malys N., McCarthy J. E.. ( 2011;). Translation initiation: variations in the mechanism can be anticipated. Cell Mol Life Sci 68: 991–1003 [CrossRef] [PubMed].
    [Google Scholar]
  25. Mennecier S., Coste G., Servant P., Bailone A., Sommer S.. ( 2004;). Mismatch repair ensures fidelity of replication and recombination in the radioresistant organism Deinococcus radiodurans. Mol Genet Genomics 272: 460–469 [CrossRef] [PubMed].
    [Google Scholar]
  26. Moll I., Grill S., Gualerzi C. O., Bläsi U.. ( 2002;). Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol 43: 239–246 [CrossRef] [PubMed].
    [Google Scholar]
  27. Mukherjee A., Bhattacharyya G., Grove A.. ( 2008;). The C-terminal domain of HU-related histone-like protein Hlp from Mycobacterium smegmatis mediates DNA end-joining. Biochemistry 47: 8744–8753 [CrossRef] [PubMed].
    [Google Scholar]
  28. Nguyen H. H., de la Tour C. B., Toueille M., Vannier F., Sommer S., Servant P.. ( 2009;). The essential histone-like protein HU plays a major role in Deinococcus radiodurans nucleoid compaction. Mol Microbiol 73: 240–252 [CrossRef] [PubMed].
    [Google Scholar]
  29. Norais C., Servant P., Bouthier-de-la-Tour C., Coureux P. D., Ithurbide S., Vannier F., Guerin P. P., Dulberger C. L., Satyshur K. A., other authors. ( 2013;). The Deinococcus radiodurans DR1245 protein, a DdrB partner homologous to YbjN proteins and reminiscent of type III secretion system chaperones. PLoS One 8: e56558 [CrossRef] [PubMed].
    [Google Scholar]
  30. O'Donnell S. M., Janssen G. R.. ( 2001;). The initiation codon affects ribosome binding and translational efficiency in Escherichia coli of cI mRNA with or without the 5′ untranslated leader. J Bacteriol 183: 1277–1283 [CrossRef] [PubMed].
    [Google Scholar]
  31. O'Donnell S. M., Janssen G. R.. ( 2002;). Leaderless mRNAs bind 70S ribosomes more strongly than 30S ribosomal subunits in Escherichia coli. J Bacteriol 184: 6730–6733 [CrossRef] [PubMed].
    [Google Scholar]
  32. Schiza V., Molina-Serrano D., Kyriakou D., Hadjiantoniou A., Kirmizis A.. ( 2013;). N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing. PLoS Genet 9: e1003805 [CrossRef] [PubMed].
    [Google Scholar]
  33. Sharadamma N., Khan K., Kumar S., Patil K. N., Hasnain S. E., Muniyappa K.. ( 2011;). Synergy between the N-terminal and C-terminal domains of Mycobacterium tuberculosis HupB is essential for high-affinity binding, DNA supercoiling and inhibition of RecA-promoted strand exchange. FEBS J 278: 3447–3462 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tillett D., Burns B. P., Neilan B. A.. ( 2000;). Optimized rapid amplification of cDNA ends (RACE) for mapping bacterial mRNA transcripts. Biotechniques 28: 448, 450, 452–453, 456 [PubMed].
    [Google Scholar]
  35. Toueille M., Mirabella B., Guérin P., Bouthier de la Tour C., Boisnard S., Nguyen H. H., Blanchard L., Servant P., de Groot A., other authors. ( 2012;). A comparative proteomic approach to better define Deinococcus nucleoid specificities. J Proteomics 75: 2588–2600 [CrossRef] [PubMed].
    [Google Scholar]
  36. Van Etten W. J., Janssen G. R.. ( 1998;). An AUG initiation codon, not codon-anticodon complementarity, is required for the translation of unleadered mRNA in Escherichia coli. Mol Microbiol 27: 987–1001 [CrossRef] [PubMed].
    [Google Scholar]
  37. Vujičić-Zagar A., Dulermo R., Le Gorrec M., Vannier F., Servant P., Sommer S., de Groot A., Serre L.. ( 2009;). Crystal structure of the IrrE protein, a central regulator of DNA damage repair in Deinococcaceae. J Mol Biol 386: 704–716 [CrossRef] [PubMed].
    [Google Scholar]
  38. Yee B., Sagulenko E., Fuerst J. A.. ( 2011;). Making heads or tails of the HU proteins in the planctomycete Gemmata obscuriglobus. Microbiology 157: 2012–2021 [CrossRef] [PubMed].
    [Google Scholar]
  39. Zheng X., Hu G. Q., She Z. S., Zhu H.. ( 2011;). Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes. BMC Genomics 12: 361 [CrossRef] [PubMed].
    [Google Scholar]
  40. Zimmerman J. M., Battista J. R.. ( 2005;). A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol 5: 17 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000186
Loading
/content/journal/micro/10.1099/mic.0.000186
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error