1887

Abstract

Genetic variation due to mutation and phase variation has a considerable impact on the commensal and pathogenic behaviours of . In this study, we provide an example of how second-site mutations can interfere with gene function analysis in . Deletion of the flagellin B gene () in M1 resulted in mutant clones with inconsistent motility phenotypes. From the mutant clones picked for further analysis, two were motile, one showed intermediate motility and two displayed severely attenuated motility. To determine the molecular basis of this differential motility, a genome resequencing approach was used. Second-site mutations were identified in the severely attenuated and intermediate motility mutant clones: a TA-dinucleotide deletion in and an A deletion in , respectively. Restoration of WT , using a newly developed genetic complementation system, confirmed that the second-site mutation caused the motility defect as opposed to the primary deletion of . This study highlights the importance of (i) screening multiple defined gene deletion mutant clones, (ii) genetic complementation of the gene deletion and ideally (iii) screening for second-site mutations that might interfere with the pathways/mechanisms under study.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000184
2015-12-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2316.html?itemId=/content/journal/micro/10.1099/mic.0.000184&mimeType=html&fmt=ahah

References

  1. Balaban M. , Joslin S. N. , Hendrixson D. R. . ( 2009;). FlhF and its GTPase activity are required for distinct processes in flagellar gene regulation and biosynthesis in Campylobacter jejuni . J Bacteriol 191: 6602–6611 [CrossRef] [PubMed].
    [Google Scholar]
  2. Barrero-Tobon A. M. , Hendrixson D. R. . ( 2014;). Flagellar biosynthesis exerts temporal regulation of secretion of specific Campylobacter jejuni colonization and virulence determinants. Mol Microbiol 93: 957–974 [CrossRef] [PubMed].
    [Google Scholar]
  3. Cingolani P. , Platts A. , Wang L. , Coon M. , Nguyen T. , Wang L. , Land S. J. , Lu X. , Ruden D. M. . ( 2012;). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6: 80–92 [CrossRef] [PubMed].
    [Google Scholar]
  4. Coward C. , van Diemen P. M. , Conlan A. J. , Gog J. R. , Stevens M. P. , Jones M. A. , Maskell D. J. . ( 2008;). Competing isogenic Campylobacter strains exhibit variable population structures in vivo. Appl Environ Microbiol 74: 3857–3867 [CrossRef] [PubMed].
    [Google Scholar]
  5. Friis C. , Wassenaar T. M. , Javed M. A. , Snipen L. , Lagesen K. , Hallin P. F. , Newell D. G. , Toszeghy M. , Ridley A. , other authors . ( 2010;). Genomic characterization of Campylobacter jejuni strain M1. PLoS One 5: e12253 [PubMed].[CrossRef]
    [Google Scholar]
  6. Gaasbeek E. J. , van der Wal F. J. , van Putten J. P. , de Boer P. , van der Graaf-van Bloois L. , de Boer A. G. , Vermaning B. J. , Wagenaar J. A. . ( 2009;). Functional characterization of excision repair and RecA-dependent recombinational DNA repair in Campylobacter jejuni . J Bacteriol 191: 3785–3793 [CrossRef] [PubMed].
    [Google Scholar]
  7. Gao B. , Lara-Tejero M. , Lefebre M. , Goodman A. L. , Galán J. E. . ( 2014;). Novel components of the flagellar system in epsilonproteobacteria. MBio 5: e01349–e14 [CrossRef] [PubMed].
    [Google Scholar]
  8. Guerry P. . ( 2007;). Campylobacter flagella: not just for motility. Trends Microbiol 15: 456–461 [CrossRef] [PubMed].
    [Google Scholar]
  9. Guerry P. , Alm R. A. , Power M. E. , Logan S. M. , Trust T. J. . ( 1991;). Role of two flagellin genes in Campylobacter motility. J Bacteriol 173: 4757–4764 [PubMed].
    [Google Scholar]
  10. Hendrixson D. R. . ( 2006;). A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism. Mol Microbiol 61: 1646–1659 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hendrixson D. R. . ( 2008;). Restoration of flagellar biosynthesis by varied mutational events in Campylobacter jejuni . Mol Microbiol 70: 519–536 [CrossRef] [PubMed].
    [Google Scholar]
  12. Hendrixson D. R. , DiRita V. J. . ( 2003;). Transcription of sigma54-dependent but not sigma28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 50: 687–702 [CrossRef] [PubMed].
    [Google Scholar]
  13. Hendrixson D. R. , DiRita V. J. . ( 2004;). Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol 52: 471–484 [CrossRef] [PubMed].
    [Google Scholar]
  14. Hendrixson D. R. , Akerley B. J. , DiRita V. J. . ( 2001;). Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol Microbiol 40: 214–224 [CrossRef] [PubMed].
    [Google Scholar]
  15. Holt J. P. , Grant A. J. , Coward C. , Maskell D. J. , Quinlan J. J. . ( 2012;). Identification of Cj1051c as a major determinant for the restriction barrier of Campylobacter jejuni strain NCTC11168. Appl Environ Microbiol 78: 7841–7848 [CrossRef] [PubMed].
    [Google Scholar]
  16. Howard S. L. , Jagannathan A. , Soo E. C. , Hui J. P. , Aubry A. J. , Ahmed I. , Karlyshev A. , Kelly J. F. , Jones M. A. , other authors . ( 2009;). Campylobacter jejuni glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickens. Infect Immun 77: 2544–2556 [CrossRef] [PubMed].
    [Google Scholar]
  17. Humphrey S. , Chaloner G. , Kemmett K. , Davidson N. , Williams N. , Kipar A. , Humphrey T. , Wigley P. . ( 2014;). Campylobacter jejuni is not merely a commensal in commercial broiler chickens and affects bird welfare. MBio 5: e01364–e14 [CrossRef] [PubMed].
    [Google Scholar]
  18. Jerome J. P. , Bell J. A. , Plovanich-Jones A. E. , Barrick J. E. , Brown C. T. , Mansfield L. S. . ( 2011;). Standing genetic variation in contingency loci drives the rapid adaptation of Campylobacter jejuni to a novel host. PLoS One 6: e16399 [CrossRef] [PubMed].
    [Google Scholar]
  19. Joslin S. N. , Hendrixson D. R. . ( 2009;). Activation of the Campylobacter jejuni FlgSR two-component system is linked to the flagellar export apparatus. J Bacteriol 191: 2656–2667 [CrossRef] [PubMed].
    [Google Scholar]
  20. Karlyshev A. V. , Linton D. , Gregson N. A. , Wren B. W. . ( 2002;). A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni . Microbiology 148: 473–480 [CrossRef] [PubMed].
    [Google Scholar]
  21. Lertsethtakarn P. , Ottemann K. M. , Hendrixson D. R. . ( 2011;). Motility and chemotaxis in Campylobacter and Helicobacter . Annu Rev Microbiol 65: 389–410 [CrossRef] [PubMed].
    [Google Scholar]
  22. Li H. , Handsaker B. , Wysoker A. , Fennell T. , Ruan J. , Homer N. , Marth G. , Abecasis G. , Durbin R. , 1000 Genome Project Data Processing Subgroup . ( 2009;). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079 [CrossRef] [PubMed].
    [Google Scholar]
  23. Lunter G. , Goodson M. . ( 2011;). Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res 21: 936–939 [CrossRef] [PubMed].
    [Google Scholar]
  24. Mohawk K. L. , Poly F. , Sahl J. W. , Rasko D. A. , Guerry P. . ( 2014;). High frequency, spontaneous motA mutations in Campylobacter jejuni strain 81-176. PLoS One 9: e88043 [CrossRef] [PubMed].
    [Google Scholar]
  25. Neal-McKinney J. M. , Konkel M. E. . ( 2012;). The Campylobacter jejuni CiaC virulence protein is secreted from the flagellum and delivered to the cytosol of host cells. Front Cell Infect Microbiol 2: 31 [CrossRef] [PubMed].
    [Google Scholar]
  26. Nuijten P. J. , van Asten F. J. , Gaastra W. , van der Zeijst B. A. . ( 1990;). Structural and functional analysis of two Campylobacter jejuni flagellin genes. J Biol Chem 265: 17798–17804 [PubMed].
    [Google Scholar]
  27. Nuijten P. J. , van den Berg A. J. , Formentini I. , van der Zeijst B. A. , Jacobs A. A. . ( 2000;). DNA rearrangements in the flagellin locus of an flaA mutant of Campylobacter jejuni during colonization of chicken ceca. Infect Immun 68: 7137–7140 [CrossRef] [PubMed].
    [Google Scholar]
  28. Pearson B. M. , Gaskin D. J. , Segers R. P. , Wells J. M. , Nuijten P. J. , van Vliet A. H. . ( 2007;). The complete genome sequence of Campylobacter jejuni strain 81116 (NCTC11828). J Bacteriol 189: 8402–8403 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ruiz-Palacios G. M. . ( 2007;). The health burden of Campylobacter infection and the impact of antimicrobial resistance: playing chicken. Clin Infect Dis 44: 701–703 [CrossRef] [PubMed].
    [Google Scholar]
  30. Seemann T. . ( 2014;). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068–2069 [CrossRef] [PubMed].
    [Google Scholar]
  31. Tatusov R. L. , Koonin E. V. , Lipman D. J. . ( 1997;). A genomic perspective on protein families. Science 278: 631–637 [CrossRef] [PubMed].
    [Google Scholar]
  32. Thomas D. K. , Lone A. G. , Selinger L. B. , Taboada E. N. , Uwiera R. R. , Abbott D. W. , Inglis G. D. . ( 2014;). Comparative variation within the genome of Campylobacter jejuni NCTC 11168 in human and murine hosts. PLoS One 9: e88229 [CrossRef] [PubMed].
    [Google Scholar]
  33. Titz B. , Rajagopala S. V. , Ester C. , Häuser R. , Uetz P. . ( 2006;). Novel conserved assembly factor of the bacterial flagellum. J Bacteriol 188: 7700–7706 [CrossRef] [PubMed].
    [Google Scholar]
  34. van Alphen L. B. , Wuhrer M. , Bleumink-Pluym N. M. , Hensbergen P. J. , Deelder A. M. , van Putten J. P. . ( 2008;). A functional Campylobacter jejuni maf4 gene results in novel glycoforms on flagellin and altered autoagglutination behaviour. Microbiology 154: 3385–3397 [CrossRef] [PubMed].
    [Google Scholar]
  35. van Vliet A. H. , Wood A. C. , Henderson J. , Wooldridge K. G. , Ketley J. M. . ( 1998;). Genetic manipulation of enteric Campylobacter species . . In Methods in Microbiology, pp. 405–419. Edited by Williams P. , Ketley J. , Salmond G. . London, UK: Academic Press;.
    [Google Scholar]
  36. Wassenaar T. M. . ( 2011;). Following an imaginary Campylobacter population from farm to fork and beyond: a bacterial perspective. Lett Appl Microbiol 53: 253–263 [CrossRef] [PubMed].
    [Google Scholar]
  37. Wassenaar T. M. , Bleumink-Pluym N. M. , van der Zeijst B. A. . ( 1991;). Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J 10: 2055–2061 [PubMed].
    [Google Scholar]
  38. Wassenaar T. M. , Bleumink-Pluym N. M. , Newell D. G. , Nuijten P. J. , van der Zeijst B. A. . ( 1994;). Differential flagellin expression in a flaA flaB+ mutant of Campylobacter jejuni . Infect Immun 62: 3901–3906 [PubMed].
    [Google Scholar]
  39. Wassenaar T. M. , Fry B. N. , van der Zeijst B. A. . ( 1995;). Variation of the flagellin gene locus of Campylobacter jejuni by recombination and horizontal gene transfer. Microbiology 141: 95–101 [CrossRef] [PubMed].
    [Google Scholar]
  40. Wilson D. J. , Gabriel E. , Leatherbarrow A. J. , Cheesbrough J. , Gee S. , Bolton E. , Fox A. , Hart C. A. , Diggle P. J. , Fearnhead P. . ( 2009;). Rapid evolution and the importance of recombination to the gastroenteric pathogen Campylobacter jejuni . Mol Biol Evol 26: 385–397 [CrossRef] [PubMed].
    [Google Scholar]
  41. Yanisch-Perron C. , Vieira J. , Messing J. . ( 1985;). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119 [CrossRef] [PubMed].
    [Google Scholar]
  42. Yao R. , Alm R. A. , Trust T. J. , Guerry P. . ( 1993;). Construction of new Campylobacter cloning vectors and a new mutational cat cassette. Gene 130: 127–130 [CrossRef] [PubMed].
    [Google Scholar]
  43. Yao R. , Burr D. H. , Doig P. , Trust T. J. , Niu H. , Guerry P. . ( 1994;). Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol Microbiol 14: 883–893 [CrossRef] [PubMed].
    [Google Scholar]
  44. Young K. T. , Davis L. M. , Dirita V. J. . ( 2007;). Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 5: 665–679 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000184
Loading
/content/journal/micro/10.1099/mic.0.000184
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error