1887

Abstract

In order to effectively manipulate rhizobium–legume symbioses for our benefit, it is crucial to first gain a complete understanding of the underlying genetics and metabolism. Studies with rhizobium auxotrophs have provided insight into the requirement for amino acid biosynthesis during the symbiosis; however, a paucity of available -proline auxotrophs has limited our understanding of the role of -proline biosynthesis. Here, we examined the symbiotic phenotypes of a recently described -proline auxotroph. Proline auxotrophy was observed to result in a host-plant-specific phenotype. The auxotroph displayed reduced symbiotic capability with alfalfa () due to a decrease in nodule mass formed and therefore a reduction in nitrogen fixed per plant. However, the proline auxotroph formed nodules on white sweet clover () that failed to fix nitrogen. The rate of white sweet clover nodulation by the auxotroph was slightly delayed, but the final number of nodules per plant was not impacted. Examination of white sweet clover nodules by confocal microscopy and transmission electron microscopy revealed the presence of the proline auxotroph cells within the host legume cells, but few differentiated bacteroids were identified compared with the bacteroid-filled plant cells of WT nodules. Overall, these results indicated that -proline biosynthesis is a general requirement for a fully effective nitrogen-fixing symbiosis, likely due to a transient requirement during bacteroid differentiation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000182
2015-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/12/2341.html?itemId=/content/journal/micro/10.1099/mic.0.000182&mimeType=html&fmt=ahah

References

  1. Archana G. . ( 2010;). Engineering nodulation competitiveness of rhizobial bioinoculants in soils. . In Microbes for Legume Improvement, pp. 157–194. Edited by Khan M. S. , Musarrat J. , Zaidi A. . Vienna: Springer;.[CrossRef]
    [Google Scholar]
  2. Barnett M. J. , Toman C. J. , Fisher R. F. , Long S. R. . ( 2004;). A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc Natl Acad Sci U S A 101: 16636–16641 [CrossRef] [PubMed].
    [Google Scholar]
  3. Becker A. , Bergès H. , Krol E. , Bruand C. , Rüberg S. , Capela D. , Lauber E. , Meilhoc E. , Ampe F. , other authors . ( 2004;). Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol Plant Microbe Interact 17: 292–303.[CrossRef]
    [Google Scholar]
  4. Burnet M. W. , Goldmann A. , Message B. , Drong R. , El Amrani A. , Loreau O. , Slightom J. , Tepfer D. . ( 2000;). The stachydrine catabolism region in Sinorhizobium meliloti encodes a multi-enzyme complex similar to the xenobiotic degrading systems in other bacteria. Gene 244: 151–161 [CrossRef] [PubMed].
    [Google Scholar]
  5. Capela D. , Filipe C. , Bobik C. , Batut J. , Bruand C. . ( 2006;). Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection. Mol Plant Microbe Interact 19: 363–372 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chien C.-T. , Rupp R. , Beck S. , Orser C. S. . ( 1991;). Proline auxotrophic and catabolic mutants of Rhizobium leguminosarum biovar viciae strain C1204b are unaffected in nitrogen fixation. FEMS Microbiol Lett 77: 299–302 [CrossRef].
    [Google Scholar]
  7. Cowie A. , Cheng J. , Sibley C. D. , Fong Y. , Zaheer R. , Patten C. L. , Morton R. M. , Golding G. B. , Finan T. M. . ( 2006;). An integrated approach to functional genomics: construction of a novel reporter gene fusion library for Sinorhizobium meliloti . Appl Environ Microbiol 72: 7156–7167 [CrossRef] [PubMed].
    [Google Scholar]
  8. de las Nieves Peltzer M. , Roques N. , Poinsot V. , Aguilar O. M. , Batut J. , Capela D. . ( 2008;). Auxotrophy accounts for nodulation defect of most Sinorhizobium meliloti mutants in the branched-chain amino acid biosynthesis pathway. Mol Plant Microbe Interact 21: 1232–1241 [CrossRef] [PubMed].
    [Google Scholar]
  9. diCenzo G. C. , Finan T. M. . ( 2015;). Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome. Mol Genet Genomics 290: 1345–1356 [CrossRef] [PubMed].
    [Google Scholar]
  10. diCenzo G. C. , MacLean A. M. , Milunovic B. , Golding G. B. , Finan T. M. . ( 2014;). Examination of prokaryotic multipartite genome evolution through experimental genome reduction. PLoS Genet 10: e1004742.[CrossRef]
    [Google Scholar]
  11. Driscoll B. T. , Finan T. M. . ( 1996;). NADP+-dependent malic enzyme of Rhizobium meliloti . J Bacteriol 178: 2224–2231 [PubMed].
    [Google Scholar]
  12. Dunn M. F. . ( 2014;). [CrossRef] [Epub ahead of print]. [CrossRef] Key roles of microsymbiont amino acid metabolism in rhizobia-legume interactions. Crit Rev Microbiol.
    [Google Scholar]
  13. Ferrières L. , Francez-Charlot A. , Gouzy J. , Rouillé S. , Kahn D. . ( 2004;). FixJ-regulated genes evolved through promoter duplication in Sinorhizobium meliloti . Microbiology 150: 2335–2345 [CrossRef] [PubMed].
    [Google Scholar]
  14. Finan T. M. , Hartweig E. , LeMieux K. , Bergman K. , Walker G. C. , Signer E. R. . ( 1984;). General transduction in Rhizobium meliloti . J Bacteriol 159: 120–124 [PubMed].
    [Google Scholar]
  15. Finan T. M. , Kunkel B. , De Vos G. F. , Signer E. R. . ( 1986;). Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167: 66–72 [PubMed].
    [Google Scholar]
  16. Finan T. M. , Weidner S. , Wong K. , Buhrmester J. , Chain P. , Vorhölter F. J. , Hernandez-Lucas I. , Becker A. , Cowie A. , other authors . ( 2001;). The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti . Proc Natl Acad Sci U S A 98: 9889–9894 [CrossRef] [PubMed].
    [Google Scholar]
  17. Glenn A. R. , Holliday S. , Dilworth M. J. . ( 1991;). The transport and catabolism of l-proline by cowpea Rhizobium NGR 234. FEMS Microbiol Lett 82: 307–312.
    [Google Scholar]
  18. Goldmann A. , Lecoeur L. , Message B. , Delarue M. , Schoonejans E. , Tepfer D. . ( 1994;). Symbiotic plasmid genes essential to the catabolism of proline betaine, or stachydrine, are also required for efficient nodulation by Rhizobium meliloti . FEMS Microbiol Lett 115: 305–311 [CrossRef].
    [Google Scholar]
  19. Hirsch A. M. , Bang M. , Ausubel F. M. . ( 1983;). Ultrastructural analysis of ineffective alfalfa nodules formed by nif : Tn5 mutants of Rhizobium meliloti . J Bacteriol 155: 367–380 [PubMed].
    [Google Scholar]
  20. Jensen H. L. . ( 1942;). Nitrogen fixation in leguminous plants. I. General characters of root-nodule bacteria isolated from species of Medicago and Trifolium in Australia. Proc Linn Soc N S W 67: 98–108.
    [Google Scholar]
  21. Jiménez-Zurdo J. I. , García-Rodríguez F. M. , Toro N. . ( 1997;). The Rhizobium meliloti putA gene: its role in the establishment of the symbiotic interaction with alfalfa. Mol Microbiol 23: 85–93 [CrossRef] [PubMed].
    [Google Scholar]
  22. Karunakaran R. , Haag A. F. , East A. K. , Ramachandran V. K. , Prell J. , James E. K. , Scocchi M. , Ferguson G. P. , Poole P. S. . ( 2010;). BacA is essential for bacteroid development in nodules of galegoid, but not phaseoloid, legumes. J Bacteriol 192: 2920–2928 [CrossRef] [PubMed].
    [Google Scholar]
  23. King N. D. , Hojnacki D. , O'Brian M. R. . ( 2000;). The Bradyrhizobium japonicum proline biosynthesis gene proC is essential for symbiosis. Appl Environ Microbiol 66: 5469–5471 [CrossRef] [PubMed].
    [Google Scholar]
  24. Kohl D. H. , Schubert K. R. , Carter M. B. , Hagedorn C. H. , Shearer G. . ( 1988;). Proline metabolism in N2-fixing root nodules: energy transfer and regulation of purine synthesis. Proc Natl Acad Sci U S A 85: 2036–2040 [CrossRef] [PubMed].
    [Google Scholar]
  25. Li Y. , Tian C. F. , Chen W. F. , Wang L. , Sui X. H. , Chen W. X. . ( 2013;). High-resolution transcriptomic analyses of Sinorhizobium sp. PLoS One 8: e70531 [PubMed].[CrossRef]
    [Google Scholar]
  26. MacLean A. M. , Finan T. M. , Sadowsky M. J. . ( 2007;). Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol 144: 615–622 [CrossRef] [PubMed].
    [Google Scholar]
  27. Milunovic B. , diCenzo G. C. , Morton R. A. , Finan T. M. . ( 2014;). Cell growth inhibition upon deletion of four toxin-antitoxin loci from the megaplasmids of Sinorhizobium meliloti . J Bacteriol 196: 811–824 [CrossRef] [PubMed].
    [Google Scholar]
  28. Oldroyd G. E. , Dixon R. . ( 2014;). Biotechnological solutions to the nitrogen problem. Curr Opin Biotechnol 26: 19–24 [CrossRef] [PubMed].
    [Google Scholar]
  29. Pedersen A. L. , Feldner H. C. , Rosendahl L. . ( 1996;). Effect of proline on nitrogenase activity in symbiosomes from root nodules of soybean (Glycine max L.) subjected to drought stress. J Exp Bot 47: 1533–1539 [CrossRef].
    [Google Scholar]
  30. Phillips D. A. , Wery J. , Joseph C. M. , Jones A. D. , Teuber L. R. . ( 1995;). Release of flavonoids and betaines from seeds of seven Medicago species. Crop Sci 35: 805–808 [CrossRef].
    [Google Scholar]
  31. Phillips D. A. , Sande E. S. , Vriezen J. A. C. , de Bruijn F. J. , Le Rudulier D. , Joseph C. M. . ( 1998;). A new genetic locus in Sinorhizobium meliloti is involved in stachydrine utilization. Appl Environ Microbiol 64: 3954–3960 [PubMed].
    [Google Scholar]
  32. Ratcliff W. C. , Kadam S. V. , Denison R. F. . ( 2008;). Poly-3-hydroxybutyrate (PHB) supports survival and reproduction in starving rhizobia. FEMS Microbiol Ecol 65: 391–399 [CrossRef] [PubMed].
    [Google Scholar]
  33. Roux B. , Rodde N. , Jardinaud M.-F. , Timmers T. , Sauviac L. , Cottret L. , Carrère S. , Sallet E. , Courcelle E. , other authors . ( 2014;). An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J 77: 817–837 [CrossRef] [PubMed].
    [Google Scholar]
  34. Sadowsky M. J. , Graham P. H. , Sugawara M. . ( 2013;). Root and stem nodule bacteria of legumes. . In The Prokaryotes, pp. 401–425. Edited by Rosenber E. . Berlin: Springer;.[CrossRef]
    [Google Scholar]
  35. Soto M. J. , van Dillewijn P. , Olivares J. , Toro N. . ( 1994;). Ornithine cyclodeaminase activity in Rhizobium meliloti . FEMS Microbiol Lett 119: 209–213 [CrossRef].
    [Google Scholar]
  36. Trinchant J.-C. , Yang Y.-S. , Rigaud J. . ( 1998;). Proline accumulation inside symbiosomes of faba bean nodules under salt stress. Physiol Plant 104: 38–49 [CrossRef].
    [Google Scholar]
  37. Trinchant J.-C. , Boscari A. , Spennato G. , Van de Sype G. , Le Rudulier D. . ( 2004;). Proline betaine accumulation and metabolism in alfalfa plants under sodium chloride stress. Exploring its compartmentalization in nodules. Plant Physiol 135: 1583–1594 [CrossRef] [PubMed].
    [Google Scholar]
  38. Udvardi M. , Poole P. S. . ( 2013;). Transport and metabolism in legume-rhizobia symbioses. Annu Rev Plant Biol 64: 781–805 [CrossRef] [PubMed].
    [Google Scholar]
  39. Vasse J. , de Billy F. , Camut S. , Truchet G. . ( 1990;). Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172: 4295–4306 [PubMed].
    [Google Scholar]
  40. Wyn Jones R. G. , Storey R. . ( 1981;). Betaines. . In The Physiology and Biochemistry of Drought Resistance in Plants, pp. 171–204. Edited by Paleg L. G. , Aspinall G. . Sydney: Academic Press;.
    [Google Scholar]
  41. Yarosh O. K. , Charles T. C. , Finan T. M. . ( 1989;). Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti . Mol Microbiol 3: 813–823 [CrossRef] [PubMed].
    [Google Scholar]
  42. Yuan Z.-C. , Zaheer R. , Finan T. M. . ( 2006;). Regulation and properties of PstSCAB, a high-affinity, high-velocity phosphate transport system of Sinorhizobium meliloti . J Bacteriol 188: 1089–1102 [CrossRef] [PubMed].
    [Google Scholar]
  43. Zhang Y. , Aono T. , Poole P. , Finan T. M. . ( 2012;). NAD(P)+-malic enzyme mutants of Sinorhizobium sp. strain NGR234, but not Azorhizobium caulinodans ORS571, maintain symbiotic N2 fixation capabilities. Appl Environ Microbiol 78: 2803–2812 [CrossRef] [PubMed].
    [Google Scholar]
  44. Zhu Y. , Shearer G. , Kohl D. H. . ( 1992;). Proline fed to intact soybean plants influences acetylene reducing activity and content and metabolism of proline in bacteroids. Plant Physiol 98: 1020–1028 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000182
Loading
/content/journal/micro/10.1099/mic.0.000182
Loading

Data & Media loading...

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error