1887

Abstract

YajL is the closest prokaryotic homologue of Parkinson's disease-associated DJ-1, a protein of undefined function involved in the oxidative stress response. We reported recently that YajL and DJ-1 protect cells against oxidative stress-induced protein aggregation by acting as covalent chaperones for the thiol proteome, including the NuoG subunit of NADH dehydrogenase 1, and that NADH dehydrogenase 1 activity is negligible in the mutant. We report here that this mutant compensates for low NADH dehydrogenase activity by utilizing NADH-independent alternative dehydrogenases, including pyruvate oxidase PoxB and -amino acid dehydrogenase DadA, and mixed acid aerobic fermentations characterized by acetate, lactate, succinate and ethanol excretion. The mutant has a low adenylate energy charge favouring glycolytic flux, and a high NADH/NAD ratio favouring fermentations over pyruvate dehydrogenase and the Krebs cycle. DNA array analysis showed upregulation of genes involved in glycolytic and pentose phosphate pathways and alternative respiratory pathways. Moreover, the mutant preferentially catabolized pyruvate-forming amino acids over Krebs cycle-related amino acids, and thus the mutant utilizes pyruvate-centred respiro-fermentative metabolism to compensate for the NADH dehydrogenase 1 defect and constitutes an interesting model for studying eukaryotic respiratory complex I deficiencies, especially those associated with Alzheimer's and Parkinson's diseases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000181
2015-11-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2220.html?itemId=/content/journal/micro/10.1099/mic.0.000181&mimeType=html&fmt=ahah

References

  1. Abdallah J., Caldas T., Kthiri F., Kern R., Richarme G.. ( 2007;). YhbO protects cells against multiple stresses. J Bacteriol 189: 9140–9144 [CrossRef] [PubMed].
    [Google Scholar]
  2. Andersen K.B., von Meyenburg K.. ( 1977;). Charges of nicotinamide adenine nucleotides and adenylate energy charge as regulatory parameters of the metabolism in Escherichia coli. J Biol Chem 252: 4151–4156 [PubMed].
    [Google Scholar]
  3. Andres-Mateos E., Perier C., Zhang L., Blanchard-Fillion B., Greco T.M., Thomas B., Ko H.S., Sasaki M., Ischiropoulos H., other authors. ( 2007;). DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci U S A 104: 14807–14812 [CrossRef] [PubMed].
    [Google Scholar]
  4. Auriol C., Bestel-Corre G., Claude J.B., Soucaille P., Meynial-Salles I.. ( 2011;). Stress-induced evolution of Escherichia coli points to original concepts in respiratory cofactor selectivity. Proc Natl Acad Sci U S A 108: 1278–1283 [CrossRef] [PubMed].
    [Google Scholar]
  5. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K.A., Tomita M., Wanner B.L., Mori H.. ( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 0008 [CrossRef] [PubMed].
    [Google Scholar]
  6. Baev M.V., Baev D., Radek A.J., Campbell J.W.. ( 2006;). Growth of Escherichia coli MG1655 on LB medium: monitoring utilization of amino acids, peptides, and nucleotides with transcriptional microarrays. Appl Microbiol Biotechnol 71: 317–322 [CrossRef] [PubMed].
    [Google Scholar]
  7. Berríos-Rivera S.J., Sánchez A.M., Bennett G.N., San K.Y.. ( 2004;). Effect of different levels of NADH availability on metabolite distribution in Escherichia coli fermentation in minimal and complex media. Appl Microbiol Biotechnol 65: 426–432 [CrossRef] [PubMed].
    [Google Scholar]
  8. Bindoff L.A., Birch-Machin M., Cartlidge N.E., Parker W.D. Jr, Turnbull D.M.. ( 1989;). Mitochondrial function in Parkinson's disease. Lancet 334: 49 [CrossRef] [PubMed].
    [Google Scholar]
  9. Brumaghim J.L., Li Y., Henle E., Linn S.. ( 2003;). Effects of hydrogen peroxide upon nicotinamide nucleotide metabolism in Escherichia coli: changes in enzyme levels and nicotinamide nucleotide pools and studies of the oxidation of NAD(P)H by Fe(III). J Biol Chem 278: 42495–42504 [CrossRef] [PubMed].
    [Google Scholar]
  10. Calhoun M.W., Gennis R.B.. ( 1993;). Demonstration of separate genetic loci encoding distinct membrane-bound respiratory NADH dehydrogenases in Escherichia coli. J Bacteriol 175: 3013–3019 [PubMed].
    [Google Scholar]
  11. Canet-Avilés R.M., Wilson M.A., Miller D.W., Ahmad R., McLendon C., Bandyopadhyay S., Baptista M.J., Ringe D., Petsko G.A., Cookson M.R.. ( 2004;). The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A 101: 9103–9108 [CrossRef] [PubMed].
    [Google Scholar]
  12. Clements C.M., McNally R.S., Conti B.J., Mak T.W., Ting J.P.. ( 2006;). DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci U S A 103: 15091–15096 [CrossRef] [PubMed].
    [Google Scholar]
  13. Collier J., Bohn C., Bouloc P.. ( 2004;). SsrA tagging of Escherichia coli SecM at its translation arrest sequence. J Biol Chem 279: 54193–54201 [CrossRef] [PubMed].
    [Google Scholar]
  14. Cookson M.R.. ( 2005;). The biochemistry of Parkinson's disease. Annu Rev Biochem 74: 29–52 [CrossRef] [PubMed].
    [Google Scholar]
  15. Danielson S.R., Andersen J.K.. ( 2008;). Oxidative and nitrative protein modifications in Parkinson's disease. Free Radic Biol Med 44: 1787–1794 [CrossRef] [PubMed].
    [Google Scholar]
  16. de Graef M.R., Alexeeva S., Snoep J.L., Teixeira de Mattos M.J.. ( 1999;). The steady-state internal redox state (NADH/NAD) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181: 2351–2357 [PubMed].
    [Google Scholar]
  17. Eiteman M.A., Altman E.. ( 2006;). Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24: 530–536 [CrossRef] [PubMed].
    [Google Scholar]
  18. Gautier V., Le H.T., Malki A., Messaoudi N., Caldas T., Kthiri F., Landoulsi A., Richarme G.. ( 2012;). YajL, the prokaryotic homolog of the Parkinsonism-associated protein DJ-1, protects cells against protein sulfenylation. J Mol Biol 421: 662–670 [CrossRef] [PubMed].
    [Google Scholar]
  19. Guzman J.N., Sanchez-Padilla J., Wokosin D., Kondapalli J., Ilijic E., Schumacker P.T., Surmeier D.J.. ( 2010;). Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468: 696–700 [CrossRef] [PubMed].
    [Google Scholar]
  20. Holm A.K., Blank L.M., Oldiges M., Schmid A., Solem C., Jensen P.R., Vemuri G.N.. ( 2010;). Metabolic and transcriptional response to cofactor perturbations in Escherichia coli. J Biol Chem 285: 17498–17506 [CrossRef] [PubMed].
    [Google Scholar]
  21. Husain M., Bourret T.J., McCollister B.D., Jones-Carson J., Laughlin J., Vázquez-Torres A.. ( 2008;). Nitric oxide evokes an adaptive response to oxidative stress by arresting respiration. J Biol Chem 283: 7682–7689 [CrossRef] [PubMed].
    [Google Scholar]
  22. Irrcher I., Aleyasin H., Seifert E.L., Hewitt S.J., Chhabra S., Phillips M., Lutz A.K., Rousseaux M.W.,, Bevilacqua L.. & other authors ( 2010;). Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum Mol Genet 19: 3734–3746 [CrossRef] [PubMed].
    [Google Scholar]
  23. Junn E., Taniguchi H., Jeong B.S., Zhao X., Ichijo H., Mouradian M.M.. ( 2005;). Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proc Natl Acad Sci U S A 102: 9691–9696 [CrossRef] [PubMed].
    [Google Scholar]
  24. Koebmann B.J., Westerhoff H.V., Snoep J.L., Nilsson D., Jensen P.R.. ( 2002;). The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol 184: 3909–3916 [CrossRef] [PubMed].
    [Google Scholar]
  25. Kthiri F., Gautier V., Le H.T., Prère M.F., Fayet O., Malki A., Landoulsi A., Richarme G.. ( 2010a;). Translational defects in a mutant deficient in YajL, the bacterial homolog of the Parkinsonism-associated protein DJ-1. J Bacteriol 192: 6302–6306 [CrossRef] [PubMed].
    [Google Scholar]
  26. Kthiri F., Le H.T., Gautier V., Caldas T., Malki A., Landoulsi A., Bohn C., Bouloc P., Richarme G.. ( 2010b;). Protein aggregation in a mutant deficient in YajL, the bacterial homolog of the parkinsonism-associated protein DJ-1. J Biol Chem 285: 10328–10336 [CrossRef] [PubMed].
    [Google Scholar]
  27. Le H.T., Gautier V., Kthiri F., Malki A., Messaoudi N., Mihoub M., Landoulsi A., An Y.J., Cha S.S., Richarme G.. ( 2012;). YajL, prokaryotic homolog of Parkinsonism-associated protein DJ-1, functions as a covalent chaperone for thiol proteome. J Biol Chem 287: 5861–5870 [CrossRef] [PubMed].
    [Google Scholar]
  28. Lee S.J., Kim S.J., Kim I.K., Ko J., Jeong C.S., Kim G.H., Park C., Kang S.O., Suh P.G., other authors. ( 2003;). Crystal structures of human DJ-1 and Escherichia coli Hsp31, which share an evolutionarily conserved domain. J Biol Chem 278: 44552–44559 [CrossRef] [PubMed].
    [Google Scholar]
  29. Lee K.J., Jeong C.S., An Y.J., Lee H.J., Park S.J., Seok Y.J., Kim P., Lee J.H., Lee K.H., Cha S.S.. ( 2011;). FrsA functions as a cofactor-independent decarboxylase to control metabolic flux. Nat Chem Biol 7: 434–436 [CrossRef] [PubMed].
    [Google Scholar]
  30. Lin S.J., Ford E., Haigis M., Liszt G., Guarente L.. ( 2004;). Caloric restriction extends yeast life span by lowering the level of NADH. Genes Dev 18: 12–16 [CrossRef] [PubMed].
    [Google Scholar]
  31. Malki A., Caldas T., Abdallah J., Kern R., Eckey V., Kim S.J., Cha S.S., Mori H., Richarme G.. ( 2005;). Peptidase activity of the Escherichia coli Hsp31 chaperone. J Biol Chem 280: 14420–14426 [CrossRef] [PubMed].
    [Google Scholar]
  32. Messaoudi N., Gautier V., Kthiri F., Lelandais G., Mihoub M., Joseleau-Petit D., Caldas T., Bohn C., Tolosa L., other authors. ( 2013;). Global stress response in a prokaryotic model of DJ-1-associated Parkinsonism. J Bacteriol 195: 1167–1178 [CrossRef] [PubMed].
    [Google Scholar]
  33. Noda S., Takezawa Y., Mizutani T., Asakura T., Nishiumi E., Onoe K., Wada M., Tomita F., Matsushita K., Yokota A.. ( 2006;). Alterations of cellular physiology in Escherichia coli in response to oxidative phosphorylation impaired by defective F1-ATPase. J Bacteriol 188: 6869–6876 [CrossRef] [PubMed].
    [Google Scholar]
  34. Prüss B.M., Nelms J.M., Park C., Wolfe A.J.. ( 1994;). Mutations in NADH:ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. J Bacteriol 176: 2143–2150 [PubMed].
    [Google Scholar]
  35. Quigley P.M., Korotkov K., Baneyx F., Hol W.G.. ( 2003;). The 1.6-A crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad. Proc Natl Acad Sci U S A 100: 3137–3142 [CrossRef] [PubMed].
    [Google Scholar]
  36. Richarme G.. ( 1987;). Binding protein-dependent transports in 2-oxo acids dehydrogenase mutants of Escherichia coli. Biochim Biophys Acta 893: 373–377 [CrossRef] [PubMed].
    [Google Scholar]
  37. Sastry M.S., Korotkov K., Brodsky Y., Baneyx F.. ( 2002;). Hsp31, the Escherichia coli yedU gene product, is a molecular chaperone whose activity is inhibited by ATP at high temperatures. J Biol Chem 277: 46026–46034 [CrossRef] [PubMed].
    [Google Scholar]
  38. Schapira A.H., Gegg M.. ( 2011;). Mitochondrial contribution to Parkinson's disease pathogenesis. Parkinsons Dis 2011: 159160 [PubMed].
    [Google Scholar]
  39. Schiff M., Bénit P., Jacobs H.T., Vockley J., Rustin P.. ( 2012;). Therapies in inborn errors of oxidative metabolism. Trends Endocrinol Metab 23: 488–495 [CrossRef] [PubMed].
    [Google Scholar]
  40. Shendelman S., Jonason A., Martinat C., Leete T., Abeliovich A.. ( 2004;). DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biol 2: e362 [CrossRef] [PubMed].
    [Google Scholar]
  41. Unden G.. ( 1998;). Transcriptional regulations and energetics of alternative respiratory pathways in facultatively anaerobic bacteria. Biochim Biophys Acta 1365: 220–224 [CrossRef].
    [Google Scholar]
  42. Unden G., Bongaerts J.. ( 1997;). Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320: 217–234 [CrossRef] [PubMed].
    [Google Scholar]
  43. van der Brug M.P., Blackinton J., Chandran J., Hao L.Y., Lal A., Mazan-Mamczarz K., Martindale J., Xie C., Ahmad R., other authors. ( 2008;). RNA binding activity of the recessive parkinsonism protein DJ-1 supports involvement in multiple cellular pathways. Proc Natl Acad Sci U S A 105: 10244–10249 [CrossRef] [PubMed].
    [Google Scholar]
  44. Wallace B.J., Young I.G.. ( 1977;). Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant. Biochim Biophys Acta 461: 84–100 [CrossRef] [PubMed].
    [Google Scholar]
  45. Wilson M.A., Collins J.L., Hod Y., Ringe D., Petsko G.A.. ( 2003;). The 1.1-A resolution crystal structure of DJ-1, the protein mutated in autosomal recessive early onset Parkinson's disease. Proc Natl Acad Sci U S A 100: 9256–9261 [CrossRef] [PubMed].
    [Google Scholar]
  46. Wilson M.A., Ringe D., Petsko G.A.. ( 2005;). The atomic resolution crystal structure of the YajL (ThiJ) protein from Escherichia coli: a close prokaryotic homologue of the Parkinsonism-associated protein DJ-1. J Mol Biol 353: 678–691 [CrossRef] [PubMed].
    [Google Scholar]
  47. Yohannes E., Barnhart D.M., Slonczewski J.L.. ( 2004;). pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J Bacteriol 186: 192–199 [CrossRef] [PubMed].
    [Google Scholar]
  48. Zhou W., Zhu M., Wilson M.A., Petsko G.A., Fink A.L.. ( 2006;). The oxidation state of DJ-1 regulates its chaperone activity toward alpha-synuclein. J Mol Biol 356: 1036–1048 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000181
Loading
/content/journal/micro/10.1099/mic.0.000181
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error