1887

Abstract

is one of the most frequent aetiological factors of staphylococcal infections. This species seems to lack the important virulence attributes described in other staphylococci. However, studies have shown that the presence of various enzymes, cytolysins and surface substances affects the virulence of . Nevertheless, none of them has been identified as crucial and determinative. Despite this, is, after , the second most frequently isolated coagulase-negative staphylococcus from clinical cases, notably from blood infections, including sepsis. This raises the question of what is the reason for the increasing clinical significance of ? The most important factor might be the ability to acquire multiresistance against available antimicrobial agents, even glycopeptides. The unusual genome plasticity of strains manifested by a large number of insertion sequences and identified SNPs might contribute to its acquisition of antibiotic resistance. Interspecies transfer of SCC cassettes suggests that might also be the reservoir of resistance genes for other staphylococci, including . Taking into consideration the great adaptability and the ability to survive in the hospital environment, especially on medical devices, becomes a crucial factor in nosocomial infections caused by multiresistant staphylococci.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000178
2015-11-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2061.html?itemId=/content/journal/micro/10.1099/mic.0.000178&mimeType=html&fmt=ahah

References

  1. Ahlstrand E. , Svensson K. , Persson L. , Tidefelt U. , Söderquist B. . ( 2011;). Glycopeptide resistance in coagulase-negative staphylococci isolated in blood cultures from patients with hematological malignancies during three decades. Eur J Clin Microbiol Infect Dis 30: 1349–1354 [CrossRef] [PubMed].
    [Google Scholar]
  2. Andrews J. , Ashby J. , Jevons G. , Marshall T. , Lines N. , Wise R. . ( 2000;). A comparison of antimicrobial resistance rates in Gram-positive pathogens isolated in the UK from October 1996 to January 1997 and October 1997 to January 1998. J Antimicrob Chemother 45: 285–293 [CrossRef] [PubMed].
    [Google Scholar]
  3. Archer G.L. , Climo M.W. . ( 1994;). Antimicrobial susceptibility of coagulase-negative staphylococci. Antimicrob Agents Chemother 38: 2231–2237 [CrossRef] [PubMed].
    [Google Scholar]
  4. Arciola C.R. , Campoccia D. , Montanaro L. . ( 2002;). Detection of biofilm-forming strains of Staphylococcus epidermidis and S. aureus . Expert Rev Mol Diagn 2: 478–484 [CrossRef] [PubMed].
    [Google Scholar]
  5. Aubert G. , Passot S. , Lucht F. , Dorche G. . ( 1990;). Selection of vancomycin- and teicoplanin-resistant Staphylococcus haemolyticus during teicoplanin treatment of S. epidermidis infection. J Antimicrob Chemother 25: 491–493 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bannerman T.L. , Wadiak D.L. , Kloos W.E. . ( 1991;). Susceptibility of Staphylococcus species and subspecies to teicoplanin. Antimicrob Agents Chemother 35: 1919–1922 [CrossRef] [PubMed].
    [Google Scholar]
  7. Barros E.M. , Ceotto H. , Bastos M.C.F. , Dos Santos K.R.N. , Giambiagi-Demarval M. . ( 2012;). Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J Clin Microbiol 50: 166–168 [CrossRef] [PubMed].
    [Google Scholar]
  8. Barros E.M. , Lemos M. , Souto-Padrón T. , Giambiagi-deMarval M. . ( 2015;). Phenotypic and genotypic characterization of biofilm formation in Staphylococcus haemolyticus . Curr Microbiol 70: 829–834 [CrossRef] [PubMed].
    [Google Scholar]
  9. Becker K. , Heilmann C. , Peters G. . ( 2014;). Coagulase-negative staphylococci. Clin Microbiol Rev 27: 870–926 [CrossRef] [PubMed].
    [Google Scholar]
  10. Berglund C. , Söderquist B. . ( 2008;). The origin of a methicillin-resistant Staphylococcus aureus isolate at a neonatal ward in Sweden-possible horizontal transfer of a staphylococcal cassette chromosome mec between methicillin-resistant Staphylococcus haemolyticus and Staphylococcus aureus . Clin Microbiol Infect 14: 1048–1056 [CrossRef] [PubMed].
    [Google Scholar]
  11. Biavasco F. , Vignaroli C. , Varaldo P.E. . ( 2000;). Glycopeptide resistance in coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis 19: 403–417 [CrossRef] [PubMed].
    [Google Scholar]
  12. Billot-Klein D. , Gutmann L. , Bryant D. , Bell D. , Van Heijenoort J. , Grewal J. , Shlaes D.M. . ( 1996;). Peptidoglycan synthesis and structure in Staphylococcus haemolyticus expressing increasing levels of resistance to glycopeptide antibiotics. J Bacteriol 178: 4696–4703 [PubMed].
    [Google Scholar]
  13. Blans M. , Troelstra A. . ( 2001;). Glycopeptide resistance in Staphylococcus haemolyticus during treatment with teicoplanin. Infect Control Hosp Epidemiol 22: 263–264 [CrossRef] [PubMed].
    [Google Scholar]
  14. Bochniarz M. , Wawron W. , Szczubiał M. . ( 2013;). Resistance to methicillin of coagulase-negative staphylococci (CNS) isolated from bovine mastitis. Pol J Vet Sci 16: 687–692 [PubMed].
    [Google Scholar]
  15. Campanile F. , Bongiorno D. , Borbone S. , Falcone M. , Giannella M. , Venditti M. , Stefani S. . ( 2008;). In vitro activity of daptomycin against methicillin- and multi-resistant Staphylococcus haemolyticus invasive isolates carrying different mec complexes. Diagn Microbiol Infect Dis 61: 227–231 [CrossRef] [PubMed].
    [Google Scholar]
  16. Cavanagh J.P. , Hjerde E. , Holden M.T.G. , Kahlke T. , Klingenberg C. , Flægstad T. , Parkhill J. , Bentley S.D. , Sollid J.U.E. . ( 2014;). Whole-genome sequencing reveals clonal expansion of multiresistant Staphylococcus haemolyticus in European hospitals. J Antimicrob Chemother 69: 2920–2927 [CrossRef] [PubMed].
    [Google Scholar]
  17. Cercenado E. , García-Leoni M.E. , Díaz M.D. , Sánchez-Carrillo C. , Catalán P. , De Quirós J.C. , Bouza E. . ( 1996;). Emergence of teicoplanin-resistant coagulase-negative staphylococci. J Clin Microbiol 34: 1765–1768 [PubMed].
    [Google Scholar]
  18. Chambers H.F. . ( 1988;). Methicillin-resistant staphylococci. Clin Microbiol Rev 1: 173–186 [PubMed].
    [Google Scholar]
  19. Cidral T.A. , Carvalho M.C. , Figueiredo A.M.S. , de Melo M.C.N. . ( 2015;). [Epub ahead of print]. Emergence of methicillin-resistant coagulase-negative staphylococci resistant to linezolid with rRNA gene C2190T and G2603T mutations. APMIS. [CrossRef] [PubMed]
    [Google Scholar]
  20. Corse J. , Williams R.E. . ( 1968;). Antibiotic resistance of coagulase-negative staphylococci and micrococci. J Clin Pathol 21: 722–728 [CrossRef] [PubMed].
    [Google Scholar]
  21. Cunningham R. , Gurnell M. , Bayston R. , Cockayne A. , Shelton A. . ( 1997;). Teicoplanin resistance in Staphylococcus haemolyticus, developing during treatment. J Antimicrob Chemother 39: 438–439 [CrossRef] [PubMed].
    [Google Scholar]
  22. Daniel B. , Saleem M. , Naseer G. , Fida A. . ( 2014;). Significance of Staphylococcus haemolyticus in hospital acquired infections. J Pioneer Med Sci 4: 119–126.
    [Google Scholar]
  23. Degener J.E. , Heck M.E.C. , van Leeuwen W.J. , Heemskerk C. , Crielaard A. , Joosten P. , Caesar P. . ( 1994;). Nosocomial infection by Staphylococcus haemolyticus and typing methods for epidemiological study. J Clin Microbiol 32: 2260–2265 [PubMed].
    [Google Scholar]
  24. Eng R.H.K. , Wang C. , Person A. , Kiehn T.E. , Armstrong D. . ( 1982;). Species identification of coagulase-negative staphylococcal isolates from blood cultures. J Clin Microbiol 15: 439–442 [PubMed].
    [Google Scholar]
  25. Enright M.C. , Robinson D.A. , Randle G. , Feil E.J. , Grundmann H. , Spratt B.G. . ( 2002;). The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A 99: 7687–7692 [CrossRef] [PubMed].
    [Google Scholar]
  26. Fajardo Olivares M. , Hidalgo Orozco R. , Rodríguez Garrido S. , Rodríguez-Vidigal F.F. , Vera Tomé A. , Robles Marcos M. . ( 2011;). Activity of vancomycin, ciprofloxacin, daptomycin, and linezolid against coagulase-negative staphylococci bacteremia. Rev Esp Quimioter 24: 74–78 [PubMed].
    [Google Scholar]
  27. Flahaut S. , Vinogradov E. , Kelley K.A. , Brennan S. , Hiramatsu K. , Lee J.C. . ( 2008;). Structural and biological characterization of a capsular polysaccharide produced by Staphylococcus haemolyticus . J Bacteriol 190: 1649–1657 [CrossRef] [PubMed].
    [Google Scholar]
  28. Fluit A.C. , Carpaij N. , Majoor E.A. , Bonten M.J.M. , Willems R.J.L. . ( 2013;). Shared reservoir of ccrB gene sequences between coagulase-negative staphylococci and methicillin-resistant Staphylococcus aureus . J Antimicrob Chemother 68: 1707–1713 [CrossRef] [PubMed].
    [Google Scholar]
  29. Fredheim E.G.A. , Klingenberg C. , Rohde H. , Frankenberger S. , Gaustad P. , Flaegstad T. , Sollid J.E. . ( 2009;). Biofilm formation by Staphylococcus haemolyticus . J Clin Microbiol 47: 1172–1180 [CrossRef] [PubMed].
    [Google Scholar]
  30. Froggatt J.W. , Johnston J.L. , Galetto D.W. , Archer G.L. . ( 1989;). Antimicrobial resistance in nosocomial isolates of Staphylococcus haemolyticus . Antimicrob Agents Chemother 33: 460–466 [CrossRef] [PubMed].
    [Google Scholar]
  31. Gemmell C.G. , Dawson J.E. . ( 1982;). Identification of coagulase-negative staphylococci with the API staph system. J Clin Microbiol 16: 874–877 [PubMed].
    [Google Scholar]
  32. Goldstein F.W. , Coutrot A. , Sieffer A. , Acar J.F. . ( 1990;). Percentages and distributions of teicoplanin- and vancomycin-resistant strains among coagulase-negative staphylococci. Antimicrob Agents Chemother 34: 899–900 [CrossRef] [PubMed].
    [Google Scholar]
  33. Gupta V. , Garg S. , Jain R. , Garg S. , Chander J. . ( 2012;). Linezolid resistant Staphylococcus haemolyticus: first case report from India. Asian Pac J Trop Med 5: 837–838 [CrossRef] [PubMed].
    [Google Scholar]
  34. Hanssen A.M. , Ericson Sollid J.U. . ( 2006;). SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol 46: 8–20 [CrossRef] [PubMed].
    [Google Scholar]
  35. Hiramatsu K. , Katayama Y. , Yuzawa H. , Ito T. . ( 2002;). Molecular genetics of methicillin-resistant Staphylococcus aureus . Int J Med Microbiol 292: 67–74 [CrossRef] [PubMed].
    [Google Scholar]
  36. Holden M.T.G. , Hsu L.Y. , Kurt K. , Weinert L.A. , Mather A.E. , Harris S.R. , Strommenger B. , Layer F. , Witte W. , other authors . ( 2013;). A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res 23: 653–664 [CrossRef] [PubMed].
    [Google Scholar]
  37. Hope R. , Livermore D.M. , Brick G. , Lillie M. , Reynolds R. , BSAC Working Parties on Resistance Surveillance . ( 2008;). Non-susceptibility trends among staphylococci from bacteraemias in the UK and Ireland, 2001–06. J Antimicrob Chemother 62: (Suppl 2), ii65–ii74 [PubMed].
    [Google Scholar]
  38. International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements ( 2009;). Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother 53: 4961–4967 [CrossRef] [PubMed].
    [Google Scholar]
  39. Ito T. , Katayama Y. , Asada K. , Mori N. , Tsutsumimoto K. , Tiensasitorn C. , Hiramatsu K. . ( 2001;). Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother 45: 1323–1336 [CrossRef] [PubMed].
    [Google Scholar]
  40. John J.F. , Harvin A.M. . ( 2007;). History and evolution of antibiotic resistance in coagulase-negative staphylococci: susceptibility profiles of new anti-staphylococcal agents. Ther Clin Risk Manag 3: 1143–1152 [PubMed].
    [Google Scholar]
  41. John J.F. Jr , Gramling P.K. , O'Dell N.M. . ( 1978;). Species identification of coagulase-negative staphylococci from urinary tract isolates. J Clin Microbiol 8: 435–437 [PubMed].
    [Google Scholar]
  42. Kim J.S. , Kim H.S. , Park J.Y. , Koo H.S. , Choi C.S. , Song W. , Cho H.C. , Lee K.M. . ( 2012;). Contamination of X-ray cassettes with methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus haemolyticus in a radiology department. Ann Lab Med 32: 206–209 [CrossRef] [PubMed].
    [Google Scholar]
  43. Klingenberg C. , Rønnestad A. , Anderson A.S. , Abrahamsen T.G. , Zorman J. , Villaruz A. , Flaegstad T. , Otto M. , Sollid J.E. . ( 2007;). Persistent strains of coagulase-negative staphylococci in a neonatal intensive care unit: virulence factors and invasiveness. Clin Microbiol Infect 13: 1100–1111 [CrossRef] [PubMed].
    [Google Scholar]
  44. Kloos W.E. , Schleifer K.H. . ( 1975;). Simplified scheme for routine identification of human Staphylococcus species. J Clin Microbiol 1: 82–88 [PubMed].
    [Google Scholar]
  45. Kollef M.H. . ( 2009;). New antimicrobial agents for methicillin-resistant Staphylococcus aureus . Crit Care Resusc 11: 282–286 [PubMed].
    [Google Scholar]
  46. Konstantinidis K.T. , Ramette A. , Tiedje J.M. . ( 2006;). The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 361: 1929–1940 [CrossRef] [PubMed].
    [Google Scholar]
  47. Kristóf K. , Kocsis E. , Szabó D. , Kardos S. , Cser V. , Nagy K. , Hermann P. , Rozgonyi F. . ( 2011;). Significance of methicillin-teicoplanin resistant Staphylococcus haemolyticus in bloodstream infections in patients of the Semmelweis University hospitals in Hungary. Eur J Clin Microbiol Infect Dis 30: 691–699 [CrossRef] [PubMed].
    [Google Scholar]
  48. Lamers R.P. , Muthukrishnan G. , Castoe T.A. , Tafur S. , Cole A.M. , Parkinson C.L. . ( 2012;). Phylogenetic relationships among Staphylococcus species and refinement of cluster groups based on multilocus data. BMC Evol Biol 12: 171 [CrossRef] [PubMed].
    [Google Scholar]
  49. Lebeaux D. , Barbier F. , Angebault C. , Benmahdi L. , Ruppé E. , Felix B. , Gaillard K. , Djossou F. , Epelboin L. , other authors . ( 2012;). Evolution of nasal carriage of methicillin-resistant coagulase-negative staphylococci in a remote population. Antimicrob Agents Chemother 56: 315–323 [CrossRef] [PubMed].
    [Google Scholar]
  50. Liakopoulos V. , Petinaki E. , Efthimiadi G. , Klapsa D. , Giannopoulou M. , Dovas S. , Eleftheriadis T. , Mertens P.R. , Stefanidis I. . ( 2008;). Clonal relatedness of methicillin-resistant coagulase-negative staphylococci in the haemodialysis unit of a single university centre in Greece. Nephrol Dial Transplant 23: 2599–2603 [CrossRef] [PubMed].
    [Google Scholar]
  51. Liekweg W.G. Jr , Greenfield L.J. . ( 1977;). Vascular prosthetic infections: collected experience and results of treatment. Surgery 81: 335–342 [PubMed].
    [Google Scholar]
  52. Livermore D.M. . ( 2003;). Linezolid in vitro: mechanism and antibacterial spectrum. J Antimicrob Chemother 51: (Suppl 2), ii9–ii16 [PubMed].
    [Google Scholar]
  53. Lloyd D.H. . ( 2007;). Reservoirs of antimicrobial resistance in pet animals. Clin Infect Dis 45: (Suppl 2), S148–S152 [CrossRef] [PubMed].
    [Google Scholar]
  54. Long K.S. , Vester B. . ( 2012;). Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 56: 603–612 [CrossRef] [PubMed].
    [Google Scholar]
  55. Martin M.A. , Pfaller M.A. , Wenzel R.P. . ( 1989;). Coagulase-negative staphylococcal bacteremia. Mortality and hospital stay. Ann Intern Med 110: 9–16 [CrossRef] [PubMed].
    [Google Scholar]
  56. Mazzariol A. , Lo Cascio G. , Kocsis E. , Maccacaro L. , Fontana R. , Cornaglia G. . ( 2012;). Outbreak of linezolid-resistant Staphylococcus haemolyticus in an Italian intensive care unit. Eur J Clin Microbiol Infect Dis 31: 523–527 [CrossRef] [PubMed].
    [Google Scholar]
  57. Mendes R.E. , Flamm R.K. , Hogan P.A. , Ross J.E. , Jones R.N. . ( 2014a;). Summary of linezolid activity and resistance mechanisms detected during the 2012 LEADER surveillance program for the United States. Antimicrob Agents Chemother 58: 1243–1247 [CrossRef] [PubMed].
    [Google Scholar]
  58. Mendes R.E. , Hogan P.A. , Streit J.M. , Jones R.N. , Flamm R.K. . ( 2014b;). Zyvox® Annual Appraisal of Potency and Spectrum (ZAAPS) program: report of linezolid activity over 9 years (2004-12). J Antimicrob Chemother 69: 1582–1588 [CrossRef] [PubMed].
    [Google Scholar]
  59. Mendes R.E. , Deshpande L.M. , Jones R.N. . ( 2014c;). Linezolid update: stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist Updat 17: 1–12 [CrossRef] [PubMed].
    [Google Scholar]
  60. Miragaia M. , Thomas J.C. , Couto I. , Enright M.C. , de Lencastre H. . ( 2007;). Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol 189: 2540–2552 [CrossRef] [PubMed].
    [Google Scholar]
  61. Młynarczyk A. , Młynarczyk G. . ( 2008;). [Molecular mechanisms of resistance to antimicrobial agents in Staphylococcus aureus]. Postępy Mikrobiol 47: 423–429 (in Polish).
    [Google Scholar]
  62. Nakipoglu Y. , Derbentli S. , Cagatay A.A. , Katranci H. . ( 2005;). Investigation of Staphylococcus strains with heterogeneous resistance to glycopeptides in a Turkish university hospital. BMC Infect Dis 5: 31 [CrossRef] [PubMed].
    [Google Scholar]
  63. Natoli S. , Fontana C. , Favaro M. , Bergamini A. , Testore G.P. , Minelli S. , Bossa M.C. , Casapulla M. , Broglio G. , other authors . ( 2009;). Characterization of coagulase-negative staphylococcal isolates from blood with reduced susceptibility to glycopeptides and therapeutic options. BMC Infect Dis 9: 83 [CrossRef] [PubMed].
    [Google Scholar]
  64. Otto M. . ( 2014;). Staphylococcus aureus toxins. Curr Opin Microbiol 17: 32–37 [PubMed]>.[CrossRef]
    [Google Scholar]
  65. Pereira P.M.A. , Binatti V.B. , Sued B.P.R. , Ramos J.N. , Peixoto R.S. , Simões C. , de Castro E.A. , Duarte J.L.M.B. , Vieira V.V. , other authors . ( 2014;). Staphylococcus haemolyticus disseminated among neonates with bacteremia in a neonatal intensive care unit in Rio de Janeiro. Brazil. Diagn Microbiol Infect Dis 78: 85–92 [CrossRef] [PubMed].
    [Google Scholar]
  66. Perl T.M. , Krüger W.A. , Houston A. , Boyken L.D. , Pfaller M.A. , Herwaldt L.A. . ( 1999;). Investigation of suspected nosocomial clusters of Staphylococcus haemolyticus infections. Infect Control Hosp Epidemiol 20: 128–131 [CrossRef] [PubMed].
    [Google Scholar]
  67. Perry C.M. , Jarvis B. . ( 2001;). Linezolid: a review of its use in the management of serious gram-positive infections. Drugs 61: 525–551 [CrossRef] [PubMed].
    [Google Scholar]
  68. Quiles-Melero I. , Gómez-Gil R. , Romero-Gómez M.P. , Sánchez-Díaz A.M. , de Pablos M. , García-Rodriguez J. , Gutiérrez A. , Mingorance J. . ( 2013;). Mechanisms of linezolid resistance among staphylococci in a tertiary hospital. J Clin Microbiol 51: 998–1001 [CrossRef] [PubMed].
    [Google Scholar]
  69. Qureshi N.K. , Yin S. , Boyle-Vavra S. . ( 2014;). The role of the Staphylococcal VraTSR regulatory system on vancomycin resistance and vanA operon expression in vancomycin-resistant Staphylococcus aureus . PLoS One 9: e85873 [CrossRef] [PubMed].
    [Google Scholar]
  70. Rahman A. , Hosaain M.A. , Mahmud C. , Paul S.K. , Sultana S. , Haque N. , Kabir M.R. , Kubayashi N. . ( 2012;). Species distribution of coagulase negative staphylococci isolated from different clinical specimens. Mymensingh Med J 21: 195–199 [PubMed].
    [Google Scholar]
  71. Rajan V. , Kumar V.G. , Gopal S. . ( 2014;). cfr-positive clinical staphylococcal isolate from India with multiple mechanisms of linezolid-resistance. Indian J Med Res 139: 463–467 [PubMed].
    [Google Scholar]
  72. Rice L.B. . ( 2012;). Mechanisms of resistance and clinical relevance of resistance to β-lactams, glycopeptides, and fluoroquinolones. Mayo Clin Proc 87: 198–208 [CrossRef] [PubMed].
    [Google Scholar]
  73. Rodríguez-Aranda A. , Daskalaki M. , Villar J. , Sanz F. , Otero J.R. , Chaves F. . ( 2009;). Nosocomial spread of linezolid-resistant Staphylococcus haemolyticus infections in an intensive care unit. Diagn Microbiol Infect Dis 63: 398–402 [CrossRef] [PubMed].
    [Google Scholar]
  74. Rosenstein R. , Götz F. . ( 2013;). What distinguishes highly pathogenic staphylococci from medium- and non-pathogenic?. Curr Top Microbiol Immunol 358: 33–89 [PubMed].
    [Google Scholar]
  75. Rupp M.E. , Archer G.L. . ( 1994;). Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 19: 231–245 [CrossRef] [PubMed].
    [Google Scholar]
  76. Ruzauskas M. , Siugzdiniene R. , Klimiene I. , Virgailis M. , Mockeliunas R. , Vaskeviciute L. , Zienius D. . ( 2014;). Prevalence of methicillin-resistant Staphylococcus haemolyticus in companion animals: a cross-sectional study. Ann Clin Microbiol Antimicrob 13: 56 [CrossRef] [PubMed].
    [Google Scholar]
  77. Schaberg D.R. , Culver D.H. , Gaynes R.P. . ( 1991;). Major trends in the microbial etiology of nosocomial infection. Am J Med 91: (3B), 72S–75S [CrossRef] [PubMed].
    [Google Scholar]
  78. Schwalbe R.S. , Stapleton J.T. , Gilligan P.H. . ( 1987;). Emergence of vancomycin resistance in coagulase-negative staphylococci. N Engl J Med 316: 927–931 [CrossRef] [PubMed].
    [Google Scholar]
  79. Shittu A. , Lin J. , Morrison D. , Kolawole D. . ( 2004;). Isolation and molecular characterization of multiresistant Staphylococcus sciuri and Staphylococcus haemolyticus associated with skin and soft-tissue infections. J Med Microbiol 53: 51–55 [CrossRef] [PubMed].
    [Google Scholar]
  80. Shore A.C. , Coleman D.C. . ( 2013;). Staphylococcal cassette chromosome mec: recent advances and new insights. Int J Med Microbiol 303: 350–359 [CrossRef] [PubMed].
    [Google Scholar]
  81. Siebert W.T. , Moreland N. , Williams T.W. Jr . ( 1979;). Synergy of vancomycin plus cefazolin or cephalothin against methicillin-resistance Staphylococcus epidermidis . J Infect Dis 139: 452–457 [CrossRef] [PubMed].
    [Google Scholar]
  82. Sieradzki K. , Villari P. , Tomasz A. . ( 1998;). Decreased susceptibilities to teicoplanin and vancomycin among coagulase-negative methicillin-resistant clinical isolates of staphylococci. Antimicrob Agents Chemother 42: 100–107 [PubMed].
    [Google Scholar]
  83. Silva P.V. , Cruz R.S. , Keim L.S. , Paula G.R. , Carvalho B.T. , Coelho L.R. , Carvalho M.C. , Rosa J.M. , Figueiredo A.M.S. , Teixeira L.A. . ( 2013;). The antimicrobial susceptibility, biofilm formation and genotypic profiles of Staphylococcus haemolyticus from bloodstream infections. Mem Inst Oswaldo Cruz 108: 812–813 [CrossRef] [PubMed].
    [Google Scholar]
  84. Simango C. . ( 2005;). Characterisation of Staphylococcus haemolyticus isolated from urinary tract infections. Cent Afr J Med 51: 112–114 [PubMed].
    [Google Scholar]
  85. Sloos J.H. , van de Klundert J.A. , Dijkshoorn L. , van Boven C.P. . ( 1998;). Changing susceptibilities of coagulase-negative staphylococci to teicoplanin in a teaching hospital. J Antimicrob Chemother 42: 787–791 [CrossRef] [PubMed].
    [Google Scholar]
  86. Squeri R. , Grillo O.C. , La Fauci V. . ( 2012;). Surveillance and evidence of contamination in hospital environment from meticillin and vancomycin-resistant microbial agents. J Prev Med Hyg 53: 143–145 [PubMed].
    [Google Scholar]
  87. Srinivasan A. , Dick J.D. , Perl T.M. . ( 2002;). Vancomycin resistance in staphylococci. Clin Microbiol Rev 15: 430–438 [CrossRef] [PubMed].
    [Google Scholar]
  88. Stewart G.T. . ( 1961;). Changes in sensitivity of stapphylococci to methicillin. BMJ 1: 863–866 [CrossRef] [PubMed].
    [Google Scholar]
  89. Sutherland R. , Rolinson G.N. . ( 1964;). Characteristics of methicillin-resistant staphylococci. J Bacteriol 87: 887–899 [PubMed].
    [Google Scholar]
  90. Szczuka E. , Kaznowski A. . ( 2014;). [The diversity of SCCmec cassettes with methicillin-resistant coagulase-negative staphylococci]. Post Mikrobiol 53: 223–228 (in Polish).
    [Google Scholar]
  91. Tabe Y. , Nakamura A. , Igari J. . ( 2001;). Glycopeptide susceptibility profiles of nosocomial multiresistant Staphylococcus haemolyticus isolates. J Infect Chemother 7: 142–147 [CrossRef] [PubMed].
    [Google Scholar]
  92. Tabe Y. , Nakamura A. , Oguri T. , Igari J. . ( 1998;). Molecular Characterization of Epidemic Multiresistant Staphylococcus haemolyticus Isolates. Diagn Microbiol Infect Dis 32: 177–183 [CrossRef] [PubMed].
    [Google Scholar]
  93. Takeuchi F. , Watanabe S. , Baba T. , Yuzawa H. , Ito T. , Morimoto Y. , Kuroda M. , Cui L. , Takahashi M. , other authors . ( 2005;). Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol 187: 7292–7308 [CrossRef] [PubMed].
    [Google Scholar]
  94. Tarazona R.E.R. , Padilla T.P. , Gómez J.C.S. , Sánchez J.E.G. , Hernandez M.S. . ( 2007;). First report in Spain of linezolid non-susceptibility in a clinical isolate of Staphylococcus haemolyticus . Int J Antimicrob Agents 30: 277–278 [CrossRef] [PubMed].
    [Google Scholar]
  95. Ternes Y.M. , Lamaro-Cardoso J. , André M.C. , Pessoa V.P. Jr , Vieira M.A. , Minamisava R. , Andrade A.L. , Kipnis A. . ( 2013;). Molecular epidemiology of coagulase-negative Staphylococcus carriage in neonates admitted to an intensive care unit in Brazil. BMC Infect Dis 13: 572 [CrossRef] [PubMed].
    [Google Scholar]
  96. Tormo M.Á. , Knecht E. , Götz F. , Lasa I. , Penadés J.R. . ( 2005;). Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?. Microbiology 151: 2465–2475 [CrossRef] [PubMed].
    [Google Scholar]
  97. Tsiodras S. , Gold H.S. , Sakoulas G. , Eliopoulos G.M. , Wennersten C. , Venkataraman L. , Moellering R.C. Jr , Ferraro M.J. . ( 2001;). Linezolid resistance in a clinical isolate of Staphylococcus aureus . Lancet 358: 207–208 [CrossRef] [PubMed].
    [Google Scholar]
  98. Tuazon C.U. , Miller H. . ( 1983;). Clinical and microbiologic aspects of serious infections caused by Staphylococcus epidermidis . Scand J Infect Dis 15: 347–360 [CrossRef] [PubMed].
    [Google Scholar]
  99. Vanderhaeghen W. , Piepers S. , Leroy F. , Van Coillie E. , Haesebrouck F. , De Vliegher S. . ( 2014;). Invited review: effect, persistence, and virulence of coagulase-negative Staphylococcus species associated with ruminant udder health. J Dairy Sci 97: 5275–5293 [CrossRef] [PubMed].
    [Google Scholar]
  100. Veach L.A. , Pfaller M.A. , Barrett M. , Koontz F.P. , Wenzel R.P. . ( 1990;). Vancomycin resistance in Staphylococcus haemolyticus causing colonization and bloodstream infection. J Clin Microbiol 28: 2064–2068 [PubMed].
    [Google Scholar]
  101. Vos P. , Garrity G. , Jones D. , Krieg N.R. , Ludwig W. , Rainey F.A. , Schleifer K.-H. , Whitman W. . ( 2009;). Bergey's Manual of Systematic Bacteriology Volume 3: The Firmicutes New York: Springer;.
    [Google Scholar]
  102. Widmer A.F. . ( 2008;). Ceftobiprole: a new option for treatment of skin and soft-tissue infections due to methicillin-resistant Staphylococcus aureus . Clin Infect Dis 46: 656–658 [CrossRef] [PubMed].
    [Google Scholar]
  103. Zhang L. , Thomas J.C. , Miragaia M. , Bouchami O. , Chaves F. , d'Azevedo P.A. , Aanensen D.M. , de Lencastre H. , Gray B.M. , Robinson D.A. . ( 2013;). Multilocus sequence typing and further genetic characterization of the enigmatic pathogen, Staphylococcus hominis . PLoS One 8: e66496 [CrossRef] [PubMed].
    [Google Scholar]
  104. Zong Z. , Peng C. , X. . ( 2011;). Diversity of SCCmec elements in methicillin-resistant coagulase-negative staphylococci clinical isolates. PLoS One 6: e20191.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000178
Loading
/content/journal/micro/10.1099/mic.0.000178
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error