1887

Abstract

Six Hyp maturation proteins (HypABCDEF) are conserved in micro-organisms that synthesize [NiFe]-hydrogenases (Hyd). Of these, the HypC chaperones interact directly with the apo-form of the catalytically active large subunit of Hyd enzymes and are believed to transfer the Fe(CN)CO moiety of the bimetallic cofactor from the Hyp machinery to this large subunit. In HypC is specifically required for maturation of Hyd-3 while its paralogue, HybG, is specifically required for Hyd-2 maturation; either HypC or HybG can mature Hyd-1. In this study, we demonstrate that the products of the operon from the deeply branching hydrogen-dependent and obligate organohalide-respiring bacterium strain CBDB1 were capable of maturing and assembling active Hyd-1, Hyd-2 and Hyd-3 in an mutant. Maturation of Hyd-1 was less efficient, presumably because HypB of was necessary to restore optimal enzyme activity. In a reciprocal maturation study, the highly O-sensitive H-uptake HupLS [NiFe]-hydrogenase from CBDB1 was also synthesized in an active form in . Together, these findings indicated that HypC from CBDB1 exhibits promiscuity in its large subunit interaction in . Based on these findings, we generated amino acid variants of HybG capable of partial recovery of Hyd-3-dependent H production in a double null mutant. Together, these findings identify amino acid regions in HypC accessory proteins that specify interaction with the large subunits of hydrogenase and demonstrate functional compatibility of Hyp accessory protein machineries.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000177
2015-11-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2204.html?itemId=/content/journal/micro/10.1099/mic.0.000177&mimeType=html&fmt=ahah

References

  1. Adrian L. , Manz W. , Szewzyk U. , Görisch H. . ( 1998;). Physiological characterization of a bacterial consortium reductively dechlorinating 1,2,3- and 1,2,4-trichlorobenzene. Appl Environ Microbiol 64: 496–503 [PubMed].
    [Google Scholar]
  2. Albareda M. , Manyani H. , Imperial J. , Brito B. , Ruiz-Argüeso T. , Böck A. , Palacios J.M. . ( 2012;). Dual role of HupF in the biosynthesis of [NiFe] hydrogenase in Rhizobium leguminosarum . BMC Microbiol 12: 256 [CrossRef] [PubMed].
    [Google Scholar]
  3. Albareda M. , Pacios L.F. , Manyani H. , Rey L. , Brito B. , Imperial J. , Ruiz-Argüeso T. , Palacios J.M. . ( 2014;). Maturation of Rhizobium leguminosarum hydrogenase in the presence of oxygen requires the interaction of the chaperone HypC and the scaffolding protein HupK. J Biol Chem 289: 21217–21229 [CrossRef] [PubMed].
    [Google Scholar]
  4. Baba T. , Ara T. , Hasegawa M. , Takai Y. , Okumura Y. , Baba M. , Datsenko K. , Tomita M. , Wanner B. , Mori H. . ( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008.[CrossRef]
    [Google Scholar]
  5. Ballantine S.P. , Boxer D.H. . ( 1985;). Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12. J Bacteriol 163: 454–459 [PubMed].
    [Google Scholar]
  6. Begg Y. , Whyte J. , Haddock B.A. . ( 1977;). The identification of mutants of Escherichia coli deficient in formate dehydrogenase and nitrate reductase activities using dye indicator plates. FEMS Microbiol Lett 2: 47–50 [CrossRef].
    [Google Scholar]
  7. Blokesch M. , Magalon A. , Böck A. . ( 2001;). Interplay between the specific chaperone-like proteins HybG and HypC in maturation of hydrogenases 1, 2, and 3 from Escherichia coli . J Bacteriol 183: 2817–2822 [CrossRef] [PubMed].
    [Google Scholar]
  8. Blokesch M. , Paschos A. , Theodoratou E. , Bauer A. , Hube M. , Huth S. , Böck A. . ( 2002;). Metal insertion into NiFe-hydrogenases. Biochem Soc Trans 30: 674–680 [CrossRef] [PubMed].
    [Google Scholar]
  9. Blokesch M. , Albracht S.P.J. , Matzanke B.F. , Drapal N.M. , Jacobi A. , Böck A. . ( 2004;). The complex between hydrogenase-maturation proteins HypC and HypD is an intermediate in the supply of cyanide to the active site iron of [NiFe]-hydrogenases. J Mol Biol 344: 155–167 [CrossRef] [PubMed].
    [Google Scholar]
  10. Böck A. , King P.W. , Blokesch M. , Posewitz M.C. . ( 2006;). Maturation of hydrogenases. Adv Microb Physiol 51: 1–71 [CrossRef] [PubMed].
    [Google Scholar]
  11. Bürstel I. , Siebert E. , Winter G. , Hummel P. , Zebger I. , Friedrich B. , Lenz O. . ( 2012;). A universal scaffold for synthesis of the Fe(CN)2(CO) moiety of [NiFe] hydrogenase. J Biol Chem 287: 38845–38853 [CrossRef] [PubMed].
    [Google Scholar]
  12. Casadaban M.J. . ( 1976;). Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104: 541–555 [CrossRef] [PubMed].
    [Google Scholar]
  13. Cherepanov P.P. , Wackernagel W. . ( 1995;). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158: 9–14 [CrossRef] [PubMed].
    [Google Scholar]
  14. Chung C.T. , Niemela S.L. , Miller R.H. . ( 1989;). One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86: 2172–2175 [CrossRef] [PubMed].
    [Google Scholar]
  15. Drapal N. , Böck A. . ( 1998;). Interaction of the hydrogenase accessory protein HypC with HycE, the large subunit of Escherichia coli hydrogenase 3 during enzyme maturation. Biochemistry 37: 2941–2948 [CrossRef] [PubMed].
    [Google Scholar]
  16. Dubini A. , Pye R.L. , Jack R.L. , Palmer T. , Sargent F. . ( 2002;). How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli . Int J Hydrogen Energy 27: 1413–1420 [CrossRef].
    [Google Scholar]
  17. Forzi L. , Sawers R.G. . ( 2007;). Maturation of [NiFe]-hydrogenases in Escherichia coli . Biometals 20: 565–578 [CrossRef] [PubMed].
    [Google Scholar]
  18. Holliger C. , Schraa G. , Stams A.J.M. , Zehnder A.J.B. . ( 1992;). Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene. Appl Environ Microbiol 58: 1636–1644 [PubMed].
    [Google Scholar]
  19. Hormann K. , Andreesen J.R. . ( 1989;). Reductive cleavage of sarcosine and betaine by Eubaterium acidaminophilum via enzyme systems different from glycine reductase. Arch Microbiol 153: 50–59 [CrossRef].
    [Google Scholar]
  20. Hube M. , Blokesch M. , Böck A. . ( 2002;). Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF. J Bacteriol 184: 3879–3885 [CrossRef] [PubMed].
    [Google Scholar]
  21. Jack R.L. , Buchanan G. , Dubini A. , Hatzixanthis K. , Palmer T. , Sargent F. . ( 2004;). Coordinating assembly and export of complex bacterial proteins. EMBO J 23: 3962–3972 [CrossRef] [PubMed].
    [Google Scholar]
  22. Jacobi A. , Rossmann R. , Böck A. . ( 1992;). The hyp operon gene products are required for the maturation of catalytically active hydrogenase isoenzymes in Escherichia coli . Arch Microbiol 158: 444–451 [CrossRef] [PubMed].
    [Google Scholar]
  23. Jayachandran G. , Görisch H. , Adrian L. . ( 2004;). Studies on hydrogenase activity and chlorobenzene respiration in Dehalococcoides sp. strain CBDB1. Arch Microbiol 182: 498–504 [CrossRef] [PubMed].
    [Google Scholar]
  24. Jehmlich N. , Schmidt F. , Hartwich M. , von Bergen M. , Richnow H.H. , Vogt C. . ( 2008;). Incorporation of carbon and nitrogen atoms into proteins measured by protein-based stable isotope probing (Protein-SIP). Rapid Commun Mass Spectrom 22: 2889–2897 [CrossRef] [PubMed].
    [Google Scholar]
  25. Jones A.K. , Lenz O. , Strack A. , Buhrke T. , Friedrich B. . ( 2004;). NiFe hydrogenase active site biosynthesis: identification of Hyp protein complexes in Ralstonia eutropha . Biochemistry 43: 13467–13477 [CrossRef] [PubMed].
    [Google Scholar]
  26. Kube M. , Beck A. , Zinder S.H. , Kuhl H. , Reinhardt R. , Adrian L. . ( 2005;). Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23: 1269–1273 [CrossRef] [PubMed].
    [Google Scholar]
  27. Lowry O.H. , Rosebrough N.J. , Farr A.L. , Randall R.J. . ( 1951;). Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275 [PubMed].
    [Google Scholar]
  28. Lubitz W. , Ogata H. , Rüdiger O. , Reijerse E. . ( 2014;). Hydrogenases. Chem Rev 114: 4081–4148 [CrossRef] [PubMed].
    [Google Scholar]
  29. Lutz S. , Jacobi A. , Schlensog V. , Böhm R. , Sawers G. , Böck A. . ( 1991;). Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli . Mol Microbiol 5: 123–135 [CrossRef] [PubMed].
    [Google Scholar]
  30. Magalon A. , Böck A. . ( 2000;). Analysis of the HypC-hycE complex, a key intermediate in the assembly of the metal center of the Escherichia coli hydrogenase 3. J Biol Chem 275: 21114–21120 [CrossRef] [PubMed].
    [Google Scholar]
  31. Maier T. , Jacobi A. , Sauter M. , Böck A. . ( 1993;). The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-binding protein. J Bacteriol 175: 630–635 [PubMed].
    [Google Scholar]
  32. Mansfeldt C.B. , Rowe A.R. , Heavner G.L. , Zinder S.H. , Richardson R.E. . ( 2014;). Meta-analyses of Dehalococcoides mccartyi strain 195 transcriptomic profiles identify a respiration rate-related gene expression transition point and interoperon recruitment of a key oxidoreductase subunit. Appl Environ Microbiol 80: 6062–6072 [CrossRef] [PubMed].
    [Google Scholar]
  33. Menon N.K. , Chatelus C.Y. , Dervartanian M. , Wendt J.C. , Shanmugam K.T. , Peck H.D. Jr , Przybyla A.E. . ( 1994;). Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176: 4416–4423 [PubMed].
    [Google Scholar]
  34. Miller J.H. . ( 1972;). Experiments in molecular genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  35. Ogata H. , Nishikawa K. , Lubitz W. . ( 2015;). Hydrogens detected by subatomic resolution protein crystallography in a [NiFe] hydrogenase. Nature 520: 571–574 [CrossRef] [PubMed].
    [Google Scholar]
  36. Paschos A. , Bauer A. , Zimmermann A. , Zehelein E. , Böck A. . ( 2002;). HypF, a carbamoyl phosphate-converting enzyme involved in [NiFe] hydrogenase maturation. J Biol Chem 277: 49945–49951 [CrossRef] [PubMed].
    [Google Scholar]
  37. Pinske C. , Sawers R.G. . ( 2014;). The importance of iron in the biosynthesis and assembly of [NiFe]-hydrogenases. Biomol Concepts 5: 55–70 [CrossRef] [PubMed].
    [Google Scholar]
  38. Pinske C. , Krüger S. , Soboh B. , Ihling C. , Kuhns M. , Braussemann M. , Jaroschinsky M. , Sauer C. , Sargent F. , other authors . ( 2011;). Efficient electron transfer from hydrogen to benzyl viologen by the [NiFe]-hydrogenases of Escherichia coli is dependent on the coexpression of the iron-sulfur cluster-containing small subunit. Arch Microbiol 193: 893–903 [CrossRef] [PubMed].
    [Google Scholar]
  39. Pinske C. , Jaroschinsky M. , Sargent F. , Sawers G. . ( 2012;). Zymographic differentiation of [NiFe]-hydrogenases 1, 2 and 3 of Escherichia coli K-12. BMC Microbiol 12: 134 [CrossRef] [PubMed].
    [Google Scholar]
  40. Pinske C. , Jaroschinsky M. , Linek S. , Kelly C.L. , Sargent F. , Sawers R.G. . ( 2015;). Physiology and bioenergetics of [NiFe]-hydrogenase 2-catalyzed H2-consuming and H2-producing reactions in Escherichia coli . J Bacteriol 197: 296–306 [CrossRef] [PubMed].
    [Google Scholar]
  41. Pöritz M. , Goris T. , Wubet T. , Tarkka M.T. , Buscot F. , Nijenhuis I. , Lechner U. , Adrian L. . ( 2013;). Genome sequences of two dehalogenation specialists – Dehalococcoides mccartyi strains BTF08 and DCMB5 enriched from the highly polluted Bitterfeld region. FEMS Microbiol Lett 343: 101–104 [CrossRef] [PubMed].
    [Google Scholar]
  42. Redwood M.D. , Mikheenko I.P. , Sargent F. , Macaskie L.E. . ( 2008;). Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 278: 48–55 [CrossRef] [PubMed].
    [Google Scholar]
  43. Reissmann S. , Hochleitner E. , Wang H. , Paschos A. , Lottspeich F. , Glass R.S. , Böck A. . ( 2003;). Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands. Science 299: 1067–1070 [CrossRef] [PubMed].
    [Google Scholar]
  44. Richard D.J. , Sawers G. , Sargent F. , McWalter L. , Boxer D.H. . ( 1999;). Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli . Microbiology 145: 2903–2912 [CrossRef] [PubMed].
    [Google Scholar]
  45. Sargent F. , Ballantine S.P. , Rugman P.A. , Palmer T. , Boxer D.H. . ( 1998a;). Reassignment of the gene encoding the Escherichia coli hydrogenase 2 small subunit–identification of a soluble precursor of the small subunit in a hypB mutant. Eur J Biochem 255: 746–754 [CrossRef] [PubMed].
    [Google Scholar]
  46. Sargent F. , Bogsch E.G. , Stanley N.R. , Wexler M. , Robinson C. , Berks B.C. , Palmer T. . ( 1998b;). Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17: 3640–3650 [CrossRef] [PubMed].
    [Google Scholar]
  47. Sasaki D. , Watanabe S. , Matsumi R. , Shoji T. , Yasukochi A. , Tagashira K. , Fukuda W. , Kanai T. , Atomi H. , other authors . ( 2013;). Identification and structure of a novel archaeal HypB for [NiFe] hydrogenase maturation. J Mol Biol 425: 1627–1640 [CrossRef] [PubMed].
    [Google Scholar]
  48. Sawers R.G. , Ballantine S.P. , Boxer D.H. . ( 1985;). Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol 164: 1324–1331 [PubMed].
    [Google Scholar]
  49. Schiffels J. , Selmer T. . ( 2015;) [CrossRef] [PubMed] A flexible toolbox to study protein-assisted metalloenzyme assembly in vitro. . Biotechnol Bioeng 112: 2360–2372.
    [Google Scholar]
  50. Schiffels J. , Pinkenburg O. , Schelden M. , Aboulnaga H.A. , Baumann M.E.M. , Selmer T. . ( 2013;). An innovative cloning platform enables large-scale production and maturation of an oxygen-tolerant [NiFe]-hydrogenase from Cupriavidus necator in Escherichia coli . PLoS One 8: e68812 [CrossRef] [PubMed].
    [Google Scholar]
  51. Schlensog V. , Böck A. . ( 1990;). Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli . Mol Microbiol 4: 1319–1327 [CrossRef] [PubMed].
    [Google Scholar]
  52. Seshadri R. , Adrian L. , Fouts D.E. , Eisen J.A. , Phillippy A.M. , Methe B.A. , Ward N.L. , Nelson W.C. , Deboy R.T. , other authors . ( 2005;). Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes . Science 307: 105–108 [CrossRef] [PubMed].
    [Google Scholar]
  53. Soboh B. , Pinske C. , Kuhns M. , Waclawek M. , Ihling C. , Trchounian K. , Trchounian A. , Sinz A. , Sawers G. . ( 2011;). The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: benzyl viologen oxidoreductase activity. BMC Microbiol 11: 173 [CrossRef] [PubMed].
    [Google Scholar]
  54. Soboh B. , Stripp S.T. , Bielak C. , Lindenstrauß U. , Braussemann M. , Javaid M. , Hallensleben M. , Granich C. , Herzberg M. , other authors . ( 2013;). The [NiFe]-hydrogenase accessory chaperones HypC and HybG of Escherichia coli are iron- and carbon dioxide-binding proteins. FEBS Lett 587: 2512–2516 [CrossRef] [PubMed].
    [Google Scholar]
  55. Soboh B. , Lindenstrauss U. , Granich C. , Javed M. , Herzberg M. , Thomas C. , Stripp S.T. . ( 2014;). [NiFe]-hydrogenase maturation in vitro: analysis of the roles of the HybG and HypD accessory proteins1. Biochem J 464: 169–177 [CrossRef] [PubMed].
    [Google Scholar]
  56. Stripp S.T. , Soboh B. , Lindenstrauss U. , Braussemann M. , Herzberg M. , Nies D.H. , Sawers R.G. , Heberle J. . ( 2013;). HypD is the scaffold protein for Fe-(CN)2CO cofactor assembly in [NiFe]-hydrogenase maturation. Biochemistry 52: 3289–3296 [CrossRef] [PubMed].
    [Google Scholar]
  57. Sun J. , Hopkins R.C. , Jenney F.E. Jr , McTernan P.M. , Adams M.W.W. . ( 2010;). Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production. PLoS One 5: e10526 [CrossRef] [PubMed].
    [Google Scholar]
  58. Vignais P.M. , Billoud B. . ( 2007;). Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107: 4206–4272 [CrossRef] [PubMed].
    [Google Scholar]
  59. Watanabe S. , Matsumi R. , Atomi H. , Imanaka T. , Miki K. . ( 2012;). Crystal structures of the HypCD complex and the HypCDE ternary complex: transient intermediate complexes during [NiFe] hydrogenase maturation. Structure 20: 2124–2137 [CrossRef] [PubMed].
    [Google Scholar]
  60. Watanabe S. , Kawashima T. , Nishitani Y. , Kanai T. , Wada T. , Inaba K. , Atomi H. , Imanaka T. , Miki K. . ( 2015;). Structural basis of a Ni acquisition cycle for [NiFe] hydrogenase by Ni-metallochaperone HypA and its enhancer. Proc Natl Acad Sci U S A 112: 7701–7706 [CrossRef] [PubMed].
    [Google Scholar]
  61. Waugh R. , Boxer D.H. . ( 1986;). Pleiotropic hydrogenase mutants of Escherichia coli K12: growth in the presence of nickel can restore hydrogenase activity. Biochimie 68: 157–166 [CrossRef] [PubMed].
    [Google Scholar]
  62. Weyman P.D. , Vargas W.A. , Chuang R.Y. , Chang Y. , Smith H.O. , Xu Q. . ( 2011;). Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina [NiFe] hydrogenases in Escherichia coli . Microbiology 157: 1363–1374 [CrossRef] [PubMed].
    [Google Scholar]
  63. Winter G. , Buhrke T. , Lenz O. , Jones A.K. , Forgber M. , Friedrich B. . ( 2005;). A model system for [NiFe] hydrogenase maturation studies: Purification of an active site-containing hydrogenase large subunit without small subunit. FEBS Lett 579: 4292–4296 [CrossRef] [PubMed].
    [Google Scholar]
  64. Wolf I. , Buhrke T. , Dernedde J. , Pohlmann A. , Friedrich B. . ( 1998;). Duplication of hyp genes involved in maturation of [NiFe] hydrogenases in Alcaligenes eutrophus H16. Arch Microbiol 170: 451–459 [CrossRef] [PubMed].
    [Google Scholar]
  65. Yonemoto I.T. , Smith H.O. , Weyman P.D. . ( 2015;). Designed surface residue substitutions in [NiFe] hydrogenase that improve electron transfer characteristics. Int J Mol Sci 16: 2020–2033 [CrossRef] [PubMed].
    [Google Scholar]
  66. Zhang J.W. , Butland G. , Greenblatt J.F. , Emili A. , Zamble D.B. . ( 2005;). A role for SlyD in the Escherichia coli hydrogenase biosynthetic pathway. J Biol Chem 280: 4360–4366 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000177
Loading
/content/journal/micro/10.1099/mic.0.000177
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error