1887

Abstract

When faced with carbon source limitation, the Gram-positive soil organism initiates a survival strategy called sporulation, which leads to the formation of highly resistant endospores that allow to survive even long periods of starvation. In order to avoid commitment to this energy-demanding and irreversible process, employs another strategy called ‘cannibalism’ to delay sporulation as long as possible. Cannibalism involves the production and secretion of two cannibalism toxins, sporulation delaying protein (SDP) and sporulation killing factor (SKF), which are able to lyse sensitive siblings. The lysed cells are thought to then provide nutrients for the cannibals to slow down or even prevent them from entering sporulation. In this study, we uncovered the role of the cell envelope stress response (CESR), especially the Bce-like antimicrobial peptide detoxification modules, in the cannibalism stress response during the stationary phase. SDP and SKF specifically induce Bce-like systems and some extracytoplasmic function σ factors in stationary-phase cultures, but only the latter provide some degree of protection. A full Bce response is only triggered by mature toxins, and not by toxin precursors. Our study provides insights into the close relationship between stationary-phase survival and the CESR of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000176
2016-01-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/1/164.html?itemId=/content/journal/micro/10.1099/mic.0.000176&mimeType=html&fmt=ahah

References

  1. Albano M. , Smits W. K. , Ho L. T. , Kraigher B. , Mandic-Mulec I. , Kuipers O. P. , Dubnau D. . ( 2005;). The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. J Bacteriol 187: 2010–2019 [CrossRef] [PubMed].
    [Google Scholar]
  2. Breukink E. , de Kruijff B. . ( 2006;). Lipid II as a target for antibiotics. Nat Rev Drug Discov 5: 321–332 [CrossRef] [PubMed].
    [Google Scholar]
  3. Butcher B. G. , Helmann J. D. . ( 2006;). Identification of Bacillus subtilis sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by bacilli. Mol Microbiol 60: 765–782 [CrossRef] [PubMed].
    [Google Scholar]
  4. Butcher B. G. , Lin Y.-P. , Helmann J. D. . ( 2007;). The yydFGHIJ operon of Bacillus subtilis encodes a peptide that induces the LiaRS two-component system. J Bacteriol 189: 8616–8625 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chen G. , Kumar A. , Wyman T. H. , Moran C. P. Jr . ( 2006;). Spo0A-dependent activation of an extended − 10 region promoter in Bacillus subtilis . J Bacteriol 188: 1411–1418 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chung J. D. , Stephanopoulos G. , Ireton K. , Grossman A. D. . ( 1994;). Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J Bacteriol 176: 1977–1984 [PubMed].
    [Google Scholar]
  7. Cutting S. M. , Van der Horn P. B. . ( 1990;). Genetic analysis. . In Molecular Biological Methods for Bacillus, pp. 27–74. Edited by Harwood C. R. , Cutting S. M. . Chichester: Wiley;.
    [Google Scholar]
  8. Domínguez-Escobar J. , Wolf D. , Fritz G. , Höfler C. , Wedlich-Söldner R. , Mascher T. . ( 2014;). Subcellular localization, interactions and dynamics of the phage-shock protein-like Lia response in Bacillus subtilis . Mol Microbiol 92: 716–732 [CrossRef] [PubMed].
    [Google Scholar]
  9. Dubois J. Y. , Kouwen T. R. , Schurich A. K. , Reis C. R. , Ensing H. T. , Trip E. N. , Zweers J. C. , van Dijl J. M. . ( 2009;). Immunity to the bacteriocin sublancin 168 is determined by the SunI (YolF) protein of Bacillus subtilis . Antimicrob Agents Chemother 53: 651–661 [CrossRef] [PubMed].
    [Google Scholar]
  10. Ellermeier C. D. , Hobbs E. C. , González-Pastor J. E. , Losick R. . ( 2006;). A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124: 549–559 [CrossRef] [PubMed].
    [Google Scholar]
  11. Flühe L. , Burghaus O. , Wieckowski B. M. , Giessen T. W. , Linne U. , Marahiel M. A. . ( 2013;). Two [4Fe–4S] clusters containing radical SAM enzyme SkfB catalyze thioether bond formation during the maturation of the sporulation killing factor. J Am Chem Soc 135: 959–962 [PubMed].[CrossRef]
    [Google Scholar]
  12. Foulston L. C. , Bibb M. J. . ( 2010;). Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes. Proc Natl Acad Sci U S A 107: 13461–13466 [CrossRef] [PubMed].
    [Google Scholar]
  13. Fujita M. , González-Pastor J. E. , Losick R. . ( 2005;). High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis . J Bacteriol 187: 1357–1368 [CrossRef] [PubMed].
    [Google Scholar]
  14. Gebhard S. , Fang C. , Shaaly A. , Leslie D. J. , Weimar M. R. , Kalamorz F. , Carne A. , Cook G. M. . ( 2014;). Identification and characterization of a bacitracin resistance network in Enterococcus faecalis . Antimicrob Agents Chemother 58: 1425–1433 [CrossRef] [PubMed].
    [Google Scholar]
  15. González-Pastor J. E. , Hobbs E. C. , Losick R. . ( 2003;). Cannibalism by sporulating bacteria. Science 301: 510–513 [CrossRef] [PubMed].
    [Google Scholar]
  16. Harwood C. R. , Cutting S. M. . ( 1990;). Molecular Biological Methods for Bacillus Chichester: Wiley;.
    [Google Scholar]
  17. Helmann J. D. . ( 2002;). The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46: 47–110 [CrossRef] [PubMed].
    [Google Scholar]
  18. Huang X. , Fredrick K. L. , Helmann J. D. . ( 1998;). Promoter recognition by Bacillus subtilis σW: autoregulation and partial overlap with the σX regulon. J Bacteriol 180: 3765–3770 [PubMed].
    [Google Scholar]
  19. Jordan S. , Rietkötter E. , Strauch M. A. , Kalamorz F. , Butcher B. G. , Helmann J. D. , Mascher T. . ( 2007;). LiaRS-dependent gene expression is embedded in transition state regulation in Bacillus subtilis . Microbiology 153: 2530–2540 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kingston A. W. , Liao X. , Helmann J. D. . ( 2013;). Contributions of the σW, σM and σX regulons to the lantibiotic resistome of Bacillus subtilis . Mol Microbiol 90: 502–518 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kingston A. W. , Zhao H. , Cook G. M. , Helmann J. D. . ( 2014;). Accumulation of heptaprenyl diphosphate sensitizes Bacillus subtilis to bacitracin: implications for the mechanism of resistance mediated by the BceAB transporter. Mol Microbiol 93: 37–49 [CrossRef] [PubMed].
    [Google Scholar]
  22. Liu W. T. , Yang Y. L. , Xu Y. , Lamsa A. , Haste N. M. , Yang J. Y. , Ng J. , Gonzalez D. , Ellermeier C. D. , other authors . ( 2010;). Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis . Proc Natl Acad Sci U S A 107: 16286–16290 [CrossRef] [PubMed].
    [Google Scholar]
  23. Mascher T. , Margulis N. G. , Wang T. , Ye R. W. , Helmann J. D. . ( 2003;). Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol 50: 1591–1604 [CrossRef] [PubMed].
    [Google Scholar]
  24. Mascher T. , Hachmann A. B. , Helmann J. D. . ( 2007;). Regulatory overlap and functional redundancy among Bacillus subtilis extracytoplasmic function sigma factors. J Bacteriol 189: 6919–6927 [CrossRef] [PubMed].
    [Google Scholar]
  25. Missiakas D. , Raina S. . ( 1998;). The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28: 1059–1066 [CrossRef] [PubMed].
    [Google Scholar]
  26. Nakano M. M. , Zheng G. , Zuber P. . ( 2000;). Dual control of sbo-alb operon expression by the Spo0 and ResDE systems of signal transduction under anaerobic conditions in Bacillus subtilis . J Bacteriol 182: 3274–3277 [CrossRef] [PubMed].
    [Google Scholar]
  27. Nicolas P. , Mäder U. , Dervyn E. , Rochat T. , Leduc A. , Pigeonneau N. , Bidnenko E. , Marchadier E. , Hoebeke M. , other authors . ( 2012;). Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis . Science 335: 1103–1106 [CrossRef] [PubMed].
    [Google Scholar]
  28. Oman T. J. , Boettcher J. M. , Wang H. , Okalibe X. N. , van der Donk W. A. . ( 2011;). Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat Chem Biol 7: 78–80 [CrossRef] [PubMed].
    [Google Scholar]
  29. Pérez Morales T. G. , Ho T. D. , Liu W. T. , Dorrestein P. C. , Ellermeier C. D. . ( 2013;). Production of the cannibalism toxin SDP is a multistep process that requires SdpA and SdpB. J Bacteriol 195: 3244–3251 [CrossRef] [PubMed].
    [Google Scholar]
  30. Radeck J. , Kraft K. , Bartels J. , Cikovic T. , Dürr F. , Emenegger J. , Kelterborn S. , Sauer C. , Fritz G. , other authors . ( 2013;). The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis . J Biol Eng 7: 29 [CrossRef] [PubMed].
    [Google Scholar]
  31. Rietkötter E. , Hoyer D. , Mascher T. . ( 2008;). Bacitracin sensing in Bacillus subtilis . Mol Microbiol 68: 768–785 [CrossRef] [PubMed].
    [Google Scholar]
  32. Sambrook J. , Russell D. W. . ( 2001;). Molecular Cloning – a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  33. Schmalisch M. , Maiques E. , Nikolov L. , Camp A. H. , Chevreux B. , Muffler A. , Rodriguez S. , Perkins J. , Losick R. . ( 2010;). Small genes under sporulation control in the Bacillus subtilis genome. J Bacteriol 192: 5402–5412 [CrossRef] [PubMed].
    [Google Scholar]
  34. Schrecke K. , Staroń A. , Mascher T. . ( 2012;). Two-component signaling in the Gram-positive envelope stress response: intramembrane-sensing histidine kinases and accessory membrane proteins. . In Two Component Systems in Bacteria, pp. 199–229. Edited by Gross R. , Beier D. . Norwich: Horizon Scientific Press;.
    [Google Scholar]
  35. Silver L. L. . ( 2003;). Novel inhibitors of bacterial cell wall synthesis. Curr Opin Microbiol 6: 431–438 [CrossRef] [PubMed].
    [Google Scholar]
  36. Silver L. L. . ( 2006;). Does the cell wall of bacteria remain a viable source of targets for novel antibiotics?. Biochem Pharmacol 71: 996–1005 [CrossRef] [PubMed].
    [Google Scholar]
  37. Staroń A. , Finkeisen D. E. , Mascher T. . ( 2011;). Peptide antibiotic sensing and detoxification modules of Bacillus subtilis . Antimicrob Agents Chemother 55: 515–525 [CrossRef] [PubMed].
    [Google Scholar]
  38. Strauch M. A. , Bobay B. G. , Cavanagh J. , Yao F. , Wilson A. , Le Breton Y. . ( 2007;). Abh and AbrB control of Bacillus subtilis antimicrobial gene expression. J Bacteriol 189: 7720–7732 [CrossRef] [PubMed].
    [Google Scholar]
  39. Walsh C. . ( 2003;). Antibiotics – Actions, Origins, Resistance Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  40. Wolf D. , Kalamorz F. , Wecke T. , Juszczak A. , Mäder U. , Homuth G. , Jordan S. , Kirstein J. , Hoppert M. , other authors . ( 2010;). In-depth profiling of the LiaR response of Bacillus subtilis . J Bacteriol 192: 4680–4693 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000176
Loading
/content/journal/micro/10.1099/mic.0.000176
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error