1887

Abstract

The phage-shock protein (Psp) response is an extracytoplasmic response system that is vital for maintenance of the cytoplasmic membrane when the cell encounters stressful conditions. The paradigm of the Psp response has been established in . The response has been shown to be important for survival during the stationary phase, maintenance of the proton motive force across membranes and implicated in virulence. In this study, we identified a putative PspA homologue in , annotated as BPSL2105. Similar to the induction of PspA in , the expression of was induced by heat shock. Deletion of resulted in a survival defect in the late stationary phase coincident with dramatic changes in the pH of the culture medium. The deletion mutant also displayed reduced survival in macrophage infection – the first indication that the Psp response plays a role during intracellular pathogenesis in this species. The purified protein formed large oligomeric structures similar to those observed for the PspA protein of , and PspA homologues in , cyanobacteria and higher plants, providing further evidence to support the identification of BPSL2105 as a PspA-like protein in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000175
2015-11-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2192.html?itemId=/content/journal/micro/10.1099/mic.0.000175&mimeType=html&fmt=ahah

References

  1. Allwood E.M., Devenish R.J., Prescott M., Adler B., Boyce J.D.. ( 2011;). Strategies for intracellular survival of Burkholderia pseudomallei. Front Microbiol 2: 170 [CrossRef] [PubMed].
    [Google Scholar]
  2. Aseeva E., Ossenbühl F., Eichacker L.A., Wanner G., Soll J., Vothknecht U.C.. ( 2004;). Complex formation of Vipp1 depends on its α-helical PspA-like domain. J Biol Chem 279: 35535–35541 [CrossRef] [PubMed].
    [Google Scholar]
  3. Beloin C., Valle J., Latour-Lambert P., Faure P., Kzreminski M., Balestrino D., Haagensen J.A.J., Molin S., Prensier G., other authors. ( 2004;). Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51: 659–674 [CrossRef] [PubMed].
    [Google Scholar]
  4. Brissette J.L., Russel M., Weiner L., Model P.. ( 1990;). Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci U S A 87: 862–866 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chaowagul W., White N.J., Dance D.A.B., Wattanagoon Y., Naigowit P., Davis T.M.E., Looareesuwan S., Pitakwatchara N.. ( 1989;). Melioidosis: a major cause of community-acquired septicemia in northeastern Thailand. J Infect Dis 159: 890–899 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cheng A.C., Currie B.J.. ( 2005;). Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18: 383–416 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cole C., Barber J.D., Barton G.J.. ( 2008;). The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36: (Suppl. 2), W197–W201 [CrossRef] [PubMed].
    [Google Scholar]
  8. Currie B.J., Dance D.A., Cheng A.C.. ( 2008;). The global distribution of Burkholderia pseudomallei and melioidosis: an update. Trans R Soc Trop Med Hyg 102: (Suppl. 1), S1–S4 [CrossRef] [PubMed].
    [Google Scholar]
  9. Currie B.J., Ward L., Cheng A.C.. ( 2010;). The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year Darwin prospective study. PLoS Negl Trop Dis 4: e900 [CrossRef] [PubMed].
    [Google Scholar]
  10. Dance D.A.. ( 2000;). Melioidosis as an emerging global problem. Acta Trop 74: 115–119 [CrossRef] [PubMed].
    [Google Scholar]
  11. Darwin A.J.. ( 2005;). The phage-shock-protein response. Mol Microbiol 57: 621–628 [CrossRef] [PubMed].
    [Google Scholar]
  12. Darwin A.J.. ( 2013;). Stress relief during host infection: the phage shock protein response supports bacterial virulence in various ways. PLoS Pathog 9: e1003388 [CrossRef] [PubMed].
    [Google Scholar]
  13. Darwin A.J., Miller V.L.. ( 2001;). The psp locus of Yersinia enterocolitica is required for virulence and for growth in vitro when the Ysc type III secretion system is produced. Mol Microbiol 39: 429–445 [CrossRef] [PubMed].
    [Google Scholar]
  14. Datta P., Ravi J., Guerrini V., Chauhan R., Neiditch M.B., Shell S.S., Fortune S.M., Hancioglu B., Igoshin O.A., Gennaro M.L.. ( 2015;). The Psp system of Mycobacterium tuberculosis integrates envelope stress-sensing and envelope-preserving functions. Mol Microbiol 97: 408–422 [CrossRef] [PubMed].
    [Google Scholar]
  15. Dworkin J., Jovanovic G., Model P.. ( 2000;). The PspA protein of Escherichia coli is a negative regulator of σ54-dependent transcription. J Bacteriol 182: 311–319 [CrossRef] [PubMed].
    [Google Scholar]
  16. Elderkin S., Jones S., Schumacher J., Studholme D., Buck M.. ( 2002;). Mechanism of action of the Escherichia coli phage shock protein PspA in repression of the AAA family transcription factor PspF. J Mol Biol 320: 23–37 [CrossRef] [PubMed].
    [Google Scholar]
  17. Elderkin S., Bordes P., Jones S., Rappas M., Buck M.. ( 2005;). Molecular determinants for PspA-mediated repression of the AAA transcriptional activator PspF. J Bacteriol 187: 3238–3248 [CrossRef] [PubMed].
    [Google Scholar]
  18. Eriksson S., Lucchini S., Thompson A., Rhen M., Hinton J.C.D.. ( 2003;). Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47: 103–118 [CrossRef] [PubMed].
    [Google Scholar]
  19. Fuhrmann E., Bultema J.B., Kahmann U., Rupprecht E., Boekema E.J., Schneider D.. ( 2009;). The vesicle-inducing protein 1 from Synechocystis sp. PCC 6803 organizes into diverse higher-ordered ring structures. Mol Biol Cell 20: 4620–4628 [CrossRef] [PubMed].
    [Google Scholar]
  20. Gan Y.H.. ( 2005;). Interaction between Burkholderia pseudomallei and the host immune response: sleeping with the enemy?. J Infect Dis 192: 1845–1850 [CrossRef] [PubMed].
    [Google Scholar]
  21. Gautier R., Douguet D., Antonny B., Drin G.. ( 2008;). heliquest: a web server to screen sequences with specific α-helical properties. Bioinformatics 24: 2101–2102 [CrossRef] [PubMed].
    [Google Scholar]
  22. Hankamer B.D., Elderkin S.L., Buck M., Nield J.. ( 2004;). Organization of the AAA+ adaptor protein PspA is an oligomeric ring. J Biol Chem 279: 8862–8866 [CrossRef] [PubMed].
    [Google Scholar]
  23. Holden M.T.G., Titball R.W., Peacock S.J., Cerdeño-Tárraga A.M., Atkins T., Crossman L.C., Pitt T., Churcher C., Mungall K., other authors. ( 2004;). Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A 101: 14240–14245 [CrossRef] [PubMed].
    [Google Scholar]
  24. Inglis T.J.J., Sagripanti J.L.. ( 2006;). Environmental factors that affect the survival and persistence of Burkholderia pseudomallei. Appl Environ Microbiol 72: 6865–6875 [CrossRef] [PubMed].
    [Google Scholar]
  25. Joly N., Burrows P.C., Engl C., Jovanovic G., Buck M.. ( 2009;). A lower-order oligomer form of phage shock protein A (PspA) stably associates with the hexameric AAA+ transcription activator protein PspF for negative regulation. J Mol Biol 394: 764–775 [CrossRef] [PubMed].
    [Google Scholar]
  26. Joly N., Engl C., Jovanovic G., Huvet M., Toni T., Sheng X., Stumpf M.P.H., Buck M.. ( 2010;). Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 34: 797–827 [CrossRef] [PubMed].
    [Google Scholar]
  27. Jones A.L., Beveridge T.J., Woods D.E.. ( 1996;). Intracellular survival of Burkholderia pseudomallei. Infect Immun 64: 782–790 [PubMed].
    [Google Scholar]
  28. Jovanovic G., Weiner L., Model P.. ( 1996;). Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon. J Bacteriol 178: 1936–1945 [PubMed].
    [Google Scholar]
  29. Jovanovic G., Rakonjac J., Model P.. ( 1999;). in vivo and in vitro activities of the Escherichia coli σ54 transcription activator, PspF, and its DNA-binding mutant, PspFΔHTH. J Mol Biol 285: 469–483 [CrossRef] [PubMed].
    [Google Scholar]
  30. Jovanovic G., Mehta P., McDonald C., Davidson A.C., Uzdavinys P., Ying L., Buck M.. ( 2014a;). The N-terminal amphipathic helices determine regulatory and effector functions of phage shock protein A (PspA) in Escherichia coli. J Mol Biol 426: 1498–1511 [CrossRef] [PubMed].
    [Google Scholar]
  31. Jovanovic G., Mehta P., Ying L., Buck M.. ( 2014b;). Anionic lipids and the cytoskeletal proteins MreB and RodZ define the spatio-temporal distribution and function of membrane stress controller PspA in Escherichia coli. Microbiology 160: 2374–2386 [CrossRef] [PubMed].
    [Google Scholar]
  32. Karlinsey J.E., Maguire M.E., Becker L.A., Crouch M.-L.V., Fang F.C.. ( 2010;). The phage shock protein PspA facilitates divalent metal transport and is required for virulence of Salmonella enterica sv. Typhimurium. Mol Microbiol 78: 669–685 [CrossRef] [PubMed].
    [Google Scholar]
  33. Kleerebezem M., Crielaard W., Tommassen J.. ( 1996;). Involvement of stress protein PspA (phage shock protein A) of Escherichia coli in maintenance of the protonmotive force under stress conditions. EMBO J 15: 162–171 [PubMed].
    [Google Scholar]
  34. Kobayashi R., Suzuki T., Yoshida M.. ( 2007;). Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes. Mol Microbiol 66: 100–109 [CrossRef] [PubMed].
    [Google Scholar]
  35. Kolter R., Siegele D.A., Tormo A.. ( 1993;). The stationary phase of the bacterial life cycle. Annu Rev Microbiol 47: 855–874 [CrossRef] [PubMed].
    [Google Scholar]
  36. Lambert R.J.W., Pearson J.. ( 2000;). Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. J Appl Microbiol 88: 784–790 [CrossRef] [PubMed].
    [Google Scholar]
  37. Logue C.A., Peak I.R.A., Beacham I.R.. ( 2009;). Facile construction of unmarked deletion mutants in Burkholderia pseudomallei using sacB counter-selection in sucrose-resistant and sucrose-sensitive isolates. J Microbiol Methods 76: 320–323 [CrossRef] [PubMed].
    [Google Scholar]
  38. Lucchini S., Liu H., Jin Q., Hinton J.C.D., Yu J.. ( 2005;). Transcriptional adaptation of Shigella flexneri during infection of macrophages and epithelial cells: insights into the strategies of a cytosolic bacterial pathogen. Infect Immun 73: 88–102 [CrossRef] [PubMed].
    [Google Scholar]
  39. Male A.L., Oyston P.C.F., Tavassoli A.. ( 2014;). Self-assembly of Escherichia coli phage shock protein A. Adv Microbiol 4: 353–359 [CrossRef].
    [Google Scholar]
  40. Milton D.L., O'Toole R., Horstedt P., Wolf-Watz H.. ( 1996;). Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178: 1310–1319 [PubMed].
    [Google Scholar]
  41. Ngauy V., Lemeshev Y., Sadkowski L., Crawford G.. ( 2005;). Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J Clin Microbiol 43: 970–972 [CrossRef] [PubMed].
    [Google Scholar]
  42. Pilatz S., Breitbach K., Hein N., Fehlhaber B., Schulze J., Brenneke B., Eberl L., Steinmetz I.. ( 2006;). Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun 74: 3576–3586 [CrossRef] [PubMed].
    [Google Scholar]
  43. Rowley G., Spector M., Kormanec J., Roberts M.. ( 2006;). Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4: 383–394 [CrossRef] [PubMed].
    [Google Scholar]
  44. Standar K., Mehner D., Osadnik H., Berthelmann F., Hause G., Lünsdorf H., Brüser T.. ( 2008;). PspA can form large scaffolds in Escherichia coli. FEBS Lett 582: 3585–3589 [CrossRef] [PubMed].
    [Google Scholar]
  45. Stevens M.P., Friebel A., Taylor L.A., Wood M.W., Brown P.J., Hardt W.D., Galyov E.E.. ( 2003;). Burkholderia pseudomallei type III secreted protein, BopE, facilitates bacterial invasion of epithelial cells and exhibits guanine nucleotide exchange factor activity. J Bacteriol 185: 4992–4996 [CrossRef] [PubMed].
    [Google Scholar]
  46. Stevens M.P., Haque A., Atkins T., Hill J., Wood M.W., Easton A., Nelson M., Underwood-Fowler C., Titball R.W., other authors. ( 2004;). Attenuated virulence and protective efficacy of a Burkholderia pseudomallei bsa type III secretion mutant in murine models of melioidosis. Microbiology 150: 2669–2676 [CrossRef] [PubMed].
    [Google Scholar]
  47. Thongboonkerd V., Vanaporn M., Songtawee N., Kanlaya R., Sinchaikul S., Chen S.T., Easton A., Chu K., Bancroft G.J., Korbsrisate S.. ( 2007;). Altered proteome in Burkholderia pseudomallei_rpoE operon knockout mutant: insights into mechanisms of rpoE operon in stress tolerance, survival, and virulence. J Proteome Res 6: 1334–1341 [CrossRef] [PubMed].
    [Google Scholar]
  48. Vrancken K., Van Mellaert L., Anné J.. ( 2008;). Characterization of the Streptomyces lividans PspA response. J Bacteriol 190: 3475–3481 [CrossRef] [PubMed].
    [Google Scholar]
  49. Wand M.E., Müller C.M., Titball R.W., Michell S.L.. ( 2011;). Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol 11: 11 [CrossRef] [PubMed].
    [Google Scholar]
  50. Weiner L., Model P.. ( 1994;). Role of an Escherichia coli stress-response operon in stationary-phase survival. Proc Natl Acad Sci U S A 91: 2191–2195 [CrossRef] [PubMed].
    [Google Scholar]
  51. Weiner L., Brissette J.L., Model P.. ( 1991;). Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms. Genes Dev 5: 1912–1923 [CrossRef] [PubMed].
    [Google Scholar]
  52. White N.J.. ( 2003;). Melioidosis. Lancet 361: 1715–1722 [CrossRef] [PubMed].
    [Google Scholar]
  53. Wolf D., Kalamorz F., Wecke T., Juszczak A., Mäder U., Homuth G., Jordan S., Kirstein J., Hoppert M., other authors. ( 2010;). In-depth profiling of the LiaR response of Bacillus subtilis. J Bacteriol 192: 4680–4693 [CrossRef] [PubMed].
    [Google Scholar]
  54. Wongtrakoongate P., Mongkoldhumrongkul N., Chaijan S., Kamchonwongpaisan S., Tungpradabkul S.. ( 2007;). Comparative proteomic profiles and the potential markers between Burkholderia pseudomallei and Burkholderia thailandensis. Mol Cell Probes 21: 81–91 [CrossRef] [PubMed].
    [Google Scholar]
  55. Yamaguchi S., Gueguen E., Horstman N.K., Darwin A.J.. ( 2010;). Membrane association of PspA depends on activation of the phage-shock-protein response in Yersinia enterocolitica. Mol Microbiol 78: 429–443 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000175
Loading
/content/journal/micro/10.1099/mic.0.000175
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error