1887

Abstract

The Gram-negative bacterial type VI secretion system (T6SS) delivers toxins to kill or inhibit the growth of susceptible bacteria, while other secretion systems target eukaryotic cells. Deletion of , a negative regulator of virulence factors in K56-2, increases T6SS activity. Macrophages infected with a K56-2 mutant display dramatic alterations in their actin cytoskeleton architecture that rely on the T6SS, which is responsible for the inactivation of multiple Rho-family GTPases by an unknown mechanism. We employed a strategy to standardize the bacterial infection of macrophages and densitometrically quantify the T6SS-associated cellular phenotype, which allowed us to characterize the phenotype of systematic deletions of each gene within the T6SS cluster and ten genes in K56-2 . None of the genes from the T6SS core cluster nor the individual genes were directly responsible for the cytoskeletal changes in infected cells. However, a mutant strain with all genes deleted was unable to cause macrophage alterations. Despite not being able to identify a specific effector protein responsible for the cytoskeletal defects in macrophages, our strategy resulted in the identification of the critical core components and accessory proteins of the T6SS assembly machinery and provides a screening method to detect T6SS effectors targeting the actin cytoskeleton in macrophages by random mutagenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000174
2015-11-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2161.html?itemId=/content/journal/micro/10.1099/mic.0.000174&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.. ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Aschtgen M.S., Bernard C.S., De Bentzmann S., Lloubès R., Cascales E.. ( 2008;). SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol 190: 7523–7531 [CrossRef] [PubMed].
    [Google Scholar]
  3. Aschtgen M.S., Thomas M.S., Cascales E.. ( 2010;). Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP… what else?. Virulence 1: 535–540 [CrossRef] [PubMed].
    [Google Scholar]
  4. Aubert D.F., Flannagan R.S., Valvano M.A.. ( 2008;). A novel sensor kinase-response regulator hybrid controls biofilm formation and type VI secretion system activity in Burkholderia cenocepacia. Infect Immun 76: 1979–1991 [CrossRef] [PubMed].
    [Google Scholar]
  5. Aubert D., MacDonald D.K., Valvano M.A.. ( 2010;). BcsKC is an essential protein for the type VI secretion system activity in Burkholderia cenocepacia that forms an outer membrane complex with BcsLB. J Biol Chem 285: 35988–35998 [CrossRef] [PubMed].
    [Google Scholar]
  6. Aubert D.F., O'Grady E.P., Hamad M.A., Sokol P.A., Valvano M.A.. ( 2013;). The Burkholderia cenocepacia sensor kinase hybrid AtsR is a global regulator modulating quorum-sensing signalling. Environ Microbiol 15: 372–385 [CrossRef] [PubMed].
    [Google Scholar]
  7. Basler M., Pilhofer M., Henderson G.P., Jensen G.J., Mekalanos J.J.. ( 2012;). Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483: 182–186 [CrossRef] [PubMed].
    [Google Scholar]
  8. Bönemann G., Pietrosiuk A., Diemand A., Zentgraf H., Mogk A.. ( 2009;). Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 28: 315–325 [CrossRef] [PubMed].
    [Google Scholar]
  9. Bönemann G., Pietrosiuk A., Mogk A.. ( 2010;). Tubules and donuts: a type VI secretion story. Mol Microbiol 76: 815–821 [CrossRef] [PubMed].
    [Google Scholar]
  10. Boyer F., Fichant G., Berthod J., Vandenbrouck Y., Attree I.. ( 2009;). Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources?. BMC Genomics 10: 104 [CrossRef] [PubMed].
    [Google Scholar]
  11. Brooks T.M., Unterweger D., Bachmann V., Kostiuk B., Pukatzki S.. ( 2013;). Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J Biol Chem 288: 7618–7625 [CrossRef] [PubMed].
    [Google Scholar]
  12. Burns J.L., Jonas M., Chi E.Y., Clark D.K., Berger A., Griffith A.. ( 1996;). Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia. Infect Immun 64: 4054–4059 [PubMed].
    [Google Scholar]
  13. Clemens D.L., Ge P., Lee B.Y., Horwitz M.A., Zhou Z.H.. ( 2015;). Atomic structure of T6SS reveals interlaced array essential to function. Cell 160: 940–951 [CrossRef] [PubMed].
    [Google Scholar]
  14. Cohen S.N., Chang A.C., Hsu L.. ( 1972;). Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69: 2110–2114 [CrossRef] [PubMed].
    [Google Scholar]
  15. Costa T.R., Felisberto-Rodrigues C., Meir A., Prevost M.S., Redzej A., Trokter M., Waksman G.. ( 2015;). Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13: 343–359 [CrossRef] [PubMed].
    [Google Scholar]
  16. Cox G.W., Mathieson B.J., Gandino L., Blasi E., Radzioch D., Varesio L.. ( 1989;). Heterogeneity of hematopoietic cells immortalized by v-myc/v-raf recombinant retrovirus infection of bone marrow or fetal liver. J Natl Cancer Inst 81: 1492–1496 [CrossRef] [PubMed].
    [Google Scholar]
  17. Craig F.F., Coote J.G., Parton R., Freer J.H., Gilmour N.J.. ( 1989;). A plasmid which can be transferred between Escherichia coli and Pasteurella haemolytica by electroporation and conjugation. J Gen Microbiol 135: 2885–2890 [PubMed].
    [Google Scholar]
  18. Drevinek P., Mahenthiralingam E.. ( 2010;). Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 16: 821–830 [CrossRef] [PubMed].
    [Google Scholar]
  19. Durand E., Zoued A., Spinelli S., Watson P.J., Aschtgen M.S., Journet L., Cambillau C., Cascales E.. ( 2012;). Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J Biol Chem 287: 14157–14168 [CrossRef] [PubMed].
    [Google Scholar]
  20. Durand E., Cambillau C., Cascales E., Journet L.. ( 2014;). VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectors. Trends Microbiol 22: 498–507 [CrossRef] [PubMed].
    [Google Scholar]
  21. English G., Byron O., Cianfanelli F.R., Prescott A.R., Coulthurst S.J.. ( 2014;). Biochemical analysis of TssK, a core component of the bacterial type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex. Biochem J 461: 291–304 [CrossRef] [PubMed].
    [Google Scholar]
  22. Felisberto-Rodrigues C., Durand E., Aschtgen M.S., Blangy S., Ortiz-Lombardia M., Douzi B., Cambillau C., Cascales E.. ( 2011;). Towards a structural comprehension of bacterial type VI secretion systems: characterization of the TssJ-TssM complex of an Escherichia coli pathovar. PLoS Pathog 7: e1002386 [CrossRef] [PubMed].
    [Google Scholar]
  23. Figurski D.H., Helinski D.R.. ( 1979;). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76: 1648–1652 [CrossRef] [PubMed].
    [Google Scholar]
  24. Flannagan R.S., Linn T., Valvano M.A.. ( 2008;). A system for the construction of targeted unmarked gene deletions in the genus Burkholderia. Environ Microbiol 10: 1652–1660 [CrossRef] [PubMed].
    [Google Scholar]
  25. Flannagan R.S., Jaumouillé V., Huynh K.K., Plumb J.D., Downey G.P., Valvano M.A., Grinstein S.. ( 2012;). Burkholderia cenocepacia disrupts host cell actin cytoskeleton by inactivating Rac and Cdc42. Cell Microbiol 14: 239–254 [CrossRef] [PubMed].
    [Google Scholar]
  26. Hamad M.A., Skeldon A.M., Valvano M.A.. ( 2010;). Construction of aminoglycoside-sensitive Burkholderia cenocepacia strains for use in studies of intracellular bacteria with the gentamicin protection assay. Appl Environ Microbiol 76: 3170–3176 [CrossRef] [PubMed].
    [Google Scholar]
  27. Hunt T.A., Kooi C., Sokol P.A., Valvano M.A.. ( 2004;). Identification of Burkholderia cenocepacia genes required for bacterial survival in vivo. Infect Immun 72: 4010–4022 [CrossRef] [PubMed].
    [Google Scholar]
  28. Isles A., Maclusky I., Corey M., Gold R., Prober C., Fleming P., Levison H.. ( 1984;). Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104: 206–210 [CrossRef][PubMed].
    [Google Scholar]
  29. Jiang F., Waterfield N.R., Yang J., Yang G., Jin Q.. ( 2014;). Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host Microbe 15: 600–610 [CrossRef].
    [Google Scholar]
  30. Kanehisa M., Goto S.. ( 2000;). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30 [CrossRef] [PubMed].
    [Google Scholar]
  31. Keith K.E., Hynes D.W., Sholdice J.E., Valvano M.A.. ( 2009;). Delayed association of the NADPH oxidase complex with macrophage vacuoles containing the opportunistic pathogen Burkholderia cenocepacia. Microbiology 155: 1004–1015 [CrossRef] [PubMed].
    [Google Scholar]
  32. Khodai-Kalaki M., Aubert D.F., Valvano M.A.. ( 2013;). Characterization of the AtsR hybrid sensor kinase phosphorelay pathway and identification of its response regulator in Burkholderia cenocepacia. J Biol Chem 288: 30473–30484 [CrossRef] [PubMed].
    [Google Scholar]
  33. Khodai-Kalaki M., Andrade A., Fathy Mohamed Y., Valvano M.A.. ( 2015;). Burkholderia cenocepacia lipopolysaccharide modification and flagellin glycosylation affect virulence but not innate immune recognition in plants. MBio 6: e00679–e00615 [CrossRef] [PubMed].
    [Google Scholar]
  34. Kudryashev M., Wang R.Y., Brackmann M., Scherer S., Maier T., Baker D., DiMaio F., Stahlberg H., Egelman E.H., Basler M.. ( 2015;). Structure of the type VI secretion system contractile sheath. Cell 160: 952–962 [CrossRef] [PubMed].
    [Google Scholar]
  35. Lamothe J., Thyssen S., Valvano M.A.. ( 2004;). Burkholderia cepacia complex isolates survive intracellularly without replication within acidic vacuoles of Acanthamoeba polyphaga. Cell Microbiol 6: 1127–1138 [CrossRef] [PubMed].
    [Google Scholar]
  36. Lamothe J., Huynh K.K., Grinstein S., Valvano M.A.. ( 2007;). Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacteria-containing vacuoles. Cell Microbiol 9: 40–53 [CrossRef] [PubMed].
    [Google Scholar]
  37. Mahenthiralingam E., Coenye T., Chung J.W., Speert D.P., Govan J.R., Taylor P., Vandamme P.. ( 2000;). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38: 910–913 [PubMed].
    [Google Scholar]
  38. Mahenthiralingam E., Baldwin A., Dowson C.G.. ( 2008;). Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104: 1539–1551 [CrossRef] [PubMed].
    [Google Scholar]
  39. Marolda C.L., Hauröder B., John M.A., Michel R., Valvano M.A.. ( 1999;). Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. Microbiology 145: 1509–1517 [CrossRef] [PubMed].
    [Google Scholar]
  40. Martin D.W., Mohr C.D.. ( 2000;). Invasion and intracellular survival of Burkholderia cepacia. Infect Immun 68: 24–29 [CrossRef] [PubMed].
    [Google Scholar]
  41. Pukatzki S., Ma A.T., Revel A.T., Sturtevant D., Mekalanos J.J.. ( 2007;). Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104: 15508–15513 [CrossRef] [PubMed].
    [Google Scholar]
  42. Rosales-Reyes R., Skeldon A.M., Aubert D.F., Valvano M.A.. ( 2012;). The type VI secretion system of Burkholderia cenocepacia affects multiple Rho family GTPases disrupting the actin cytoskeleton and the assembly of NADPH oxidase complex in macrophages. Cell Microbiol 14: 255–273 [CrossRef] [PubMed].
    [Google Scholar]
  43. Russell A.B., Hood R.D., Bui N.K., LeRoux M., Vollmer W., Mougous J.D.. ( 2011;). Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475: 343–347 [CrossRef] [PubMed].
    [Google Scholar]
  44. Russell A.B., Peterson S.B., Mougous J.D.. ( 2014;). Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12: 137–148 [CrossRef] [PubMed].
    [Google Scholar]
  45. Saini L.S., Galsworthy S.B., John M.A., Valvano M.A.. ( 1999;). Intracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activation. Microbiology 145: 3465–3475 [CrossRef] [PubMed].
    [Google Scholar]
  46. Sajjan U.S., Yang J.H., Hershenson M.B., LiPuma J.J.. ( 2006;). Intracellular trafficking and replication of Burkholderia cenocepacia in human cystic fibrosis airway epithelial cells. Cell Microbiol 8: 1456–1466 [CrossRef] [PubMed].
    [Google Scholar]
  47. Sambrook J., Fritsch E.F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn.. New York: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  48. Schmerk C.L., Valvano M.A.. ( 2013;). Burkholderia multivorans survival and trafficking within macrophages. J Med Microbiol 62: 173–184 [CrossRef] [PubMed].
    [Google Scholar]
  49. Schwarz S., Singh P., Robertson J.D., LeRoux M., Skerrett S.J., Goodlett D.R., West T.E., Mougous J.D.. ( 2014;). VgrG-5 is a Burkholderia type VI secretion system-exported protein required for multinucleated giant cell formation and virulence. Infect Immun 82: 1445–1452 [CrossRef] [PubMed].
    [Google Scholar]
  50. Shalom G., Shaw J.G., Thomas M.S.. ( 2007;). In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology 153: 2689–2699 [CrossRef] [PubMed].
    [Google Scholar]
  51. Shneider M.M., Buth S.A., Ho B.T., Basler M., Mekalanos J.J., Leiman P.G.. ( 2013;). PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500: 350–353 [CrossRef] [PubMed].
    [Google Scholar]
  52. Smith T.F., Waterman M.S.. ( 1981;). Identification of common molecular subsequences. J Mol Biol 147: 195–197 [CrossRef] [PubMed].
    [Google Scholar]
  53. Suarez G., Sierra J.C., Erova T.E., Sha J., Horneman A.J., Chopra A.K.. ( 2010;). A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 192: 155–168 [CrossRef] [PubMed].
    [Google Scholar]
  54. Thomson E.L.S., Dennis J.J.. ( 2013;). Common duckweed (Lemna minor) is a versatile high-throughput infection model for the Burkholderia cepacia complex and other pathogenic bacteria. PLoS One 8: e80102 [CrossRef] [PubMed].
    [Google Scholar]
  55. Toesca I.J., French C.T., Miller J.F.. ( 2014;). The type VI secretion system spike protein VgrG5 mediates membrane fusion during intercellular spread by pseudomallei group Burkholderia species. Infect Immun 82: 1436–1444 [CrossRef] [PubMed].
    [Google Scholar]
  56. Uehlinger S., Schwager S., Bernier S.P., Riedel K., Nguyen D.T., Sokol P.A., Eberl L.. ( 2009;). Identification of specific and universal virulence factors in Burkholderia cenocepacia strains by using multiple infection hosts. Infect Immun 77: 4102–4110 [CrossRef] [PubMed].
    [Google Scholar]
  57. Varga J.J., Losada L., Zelazny A.M., Kim M., McCorrison J., Brinkac L., Sampaio E.P., Greenberg D.E., Singh I., other authors. ( 2013;). Draft genome sequences of Burkholderia cenocepacia ET12 lineage strains K56-2 and BC7. Genome Announc 1: e00841–e00813 [CrossRef] [PubMed].
    [Google Scholar]
  58. Vergunst A.C., Meijer A.H., Renshaw S.A., O'Callaghan D.. ( 2010;). Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection. Infect Immun 78: 1495–1508 [CrossRef] [PubMed].
    [Google Scholar]
  59. Waters V.. ( 2012;). New treatments for emerging cystic fibrosis pathogens other than Pseudomonas. Curr Pharm Des 18: 696–725 [CrossRef] [PubMed].
    [Google Scholar]
  60. Zheng J., Leung K.Y.. ( 2007;). Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66: 1192–1206 [CrossRef] [PubMed].
    [Google Scholar]
  61. Zheng J., Ho B., Mekalanos J.J.. ( 2011;). Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS One 6: e23876 [CrossRef] [PubMed].
    [Google Scholar]
  62. Zoued A., Durand E., Bebeacua C., Brunet Y.R., Douzi B., Cambillau C., Cascales E., Journet L.. ( 2013;). TssK is a trimeric cytoplasmic protein interacting with components of both phage-like and membrane anchoring complexes of the type VI secretion system. J Biol Chem 288: 27031–27041 [CrossRef] [PubMed].
    [Google Scholar]
  63. Zoued A., Brunet Y.R., Durand E., Aschtgen M.S., Logger L., Douzi B., Journet L., Cambillau C., Cascales E.. ( 2014;). Architecture and assembly of the type VI secretion system. Biochim Biophys Acta 1843: 1664–1673 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000174
Loading
/content/journal/micro/10.1099/mic.0.000174
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error