1887

Abstract

spp. are intracellular bacterial pathogens that cause diarrhoeal disease in humans. utilize the host actin cytoskeleton to enter cells, move through the cytoplasm of cells and pass into adjacent cells. Ena/VASP family proteins are highly conserved proteins that participate in actin-dependent dynamic cellular processes. We tested whether Ena/VASP family members VASP (vasodilator-stimulated phosphoprotein), Mena (mammalian-enabled) or EVL (Ena-VASP-like) contribute to spread through cell monolayers. VASP and EVL restricted cell-to-cell spread without significantly altering actin-based motility, whereas Mena had no effect on these processes. Phosphorylation of VASP on Ser153, Ser235 and Thr274 regulated its subcellular distribution and function. VASP derivatives that lack the Ena/VASP homology 1 (EVH1) domain or contain a phosphoablative mutation of Ser153 were defective in restricting spread, indicating that the EVH1 domain and phosphorylation on Ser153 are required for this process. The EVH1 domain and Ser153 of VASP were required for VASP localization to focal adhesions, and localization of VASP to focal adhesions and/or the leading edge was required for restriction of spread. The contribution of the EVH1 domain was from both the donor and the recipient cell, whereas the contribution of Ser153 phosphorylation was only from the donor cell. Thus, unlike host proteins characterized in pathogenesis that promote bacterial spread, VASP and EVL function to limit it. The ability of VASP and EVL to limit spread highlights the critical role of focal adhesion complexes and/or the leading edge in bacterial passage between cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000173
2015-11-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2149.html?itemId=/content/journal/micro/10.1099/mic.0.000173&mimeType=html&fmt=ahah

References

  1. Ally S., Sauer N.J., Loureiro J.J., Snapper S.B., Gertler F.B., Goldberg M.B.. ( 2004;). Shigella interactions with the actin cytoskeleton in the absence of Ena/VASP family proteins. Cell Microbiol 6: 355–366 [CrossRef] [PubMed].
    [Google Scholar]
  2. Applewhite D.A., Barzik M., Kojima S., Svitkina T.M., Gertler F.B., Borisy G.G.. ( 2007;). Ena/VASP proteins have an anti-capping independent function in filopodia formation. Mol Biol Cell 18: 2579–2591 [CrossRef] [PubMed].
    [Google Scholar]
  3. Auerbuch V., Loureiro J.J., Gertler F.B., Theriot J.A., Portnoy D.A.. ( 2003;). Ena/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility. Mol Microbiol 49: 1361–1375 [CrossRef] [PubMed].
    [Google Scholar]
  4. Barzik M., McClain L.M., Gupton S.L., Gertler F.B.. ( 2014;). Ena/VASP regulates mDia2-initiated filopodial length, dynamics, and function. Mol Biol Cell 25: 2604–2619 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bear J.E., Gertler F.B.. ( 2009;). Ena/VASP: towards resolving a pointed controversy at the barbed end. J Cell Sci 122: 1947–1953 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bear J.E., Loureiro J.J., Libova I., Fässler R., Wehland J., Gertler F.B.. ( 2000;). Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 101: 717–728 [CrossRef] [PubMed].
    [Google Scholar]
  7. Benz P.M., Blume C., Seifert S., Wilhelm S., Waschke J., Schuh K., Gertler F., Münzel T., Renné T.. ( 2009;). Differential VASP phosphorylation controls remodeling of the actin cytoskeleton. J Cell Sci 122: 3954–3965 [CrossRef] [PubMed].
    [Google Scholar]
  8. Bilancia C.G., Winkelman J.D., Tsygankov D., Nowotarski S.H., Sees J.A., Comber K., Evans I., Lakhani V., Wood W., other authors. ( 2014;). Enabled negatively regulates diaphanous-driven actin dynamics in vitro and in vivo. Dev Cell 28: 394–408 [CrossRef] [PubMed].
    [Google Scholar]
  9. Blume C., Benz P.M., Walter U., Ha J., Kemp B.E., Renné T.. ( 2007;). AMP-activated protein kinase impairs endothelial actin cytoskeleton assembly by phosphorylating vasodilator-stimulated phosphoprotein. J Biol Chem 282: 4601–4612 [CrossRef] [PubMed].
    [Google Scholar]
  10. Boëda B., Briggs D.C., Higgins T., Garvalov B.K., Fadden A.J., McDonald N.Q., Way M.. ( 2007;). Tes, a specific Mena interacting partner, breaks the rules for EVH1 binding. Mol Cell 28: 1071–1082 [CrossRef] [PubMed].
    [Google Scholar]
  11. Breitbach K., Rottner K., Klocke S., Rohde M., Jenzora A., Wehland J., Steinmetz I.. ( 2003;). Actin-based motility of Burkholderia pseudomallei involves the Arp 2/3 complex, but not N-WASP and Ena/VASP proteins. Cell Microbiol 5: 385–393 [CrossRef] [PubMed].
    [Google Scholar]
  12. Breitsprecher D., Kiesewetter A.K., Linkner J., Vinzenz M., Stradal T.E., Small J.V., Curth U., Dickinson R.B., Faix J.. ( 2011;). Molecular mechanism of Ena/VASP-mediated actin-filament elongation. EMBO J 30: 456–467 [CrossRef] [PubMed].
    [Google Scholar]
  13. Butt E., Abel K., Krieger M., Palm D., Hoppe V., Hoppe J., Walter U.. ( 1994;). cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J Biol Chem 269: 14509–14517 [PubMed].
    [Google Scholar]
  14. Chakraborty T., Ebel F., Domann E., Niebuhr K., Gerstel B., Pistor S., Temm-Grove C.J., Jockusch B.M., Reinhard M., other authors. ( 1995;). A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J 14: 1314–1321 [PubMed].
    [Google Scholar]
  15. Chen X.J., Squarr A.J., Stephan R., Chen B., Higgins T.E., Barry D.J., Martin M.C., Rosen M.K., Bogdan S., Way M.. ( 2014;). Ena/VASP proteins cooperate with the WAVE complex to regulate the actin cytoskeleton. Dev Cell 30: 569–584 [CrossRef] [PubMed].
    [Google Scholar]
  16. Döppler H.R., Bastea L.I., Lewis-Tuffin L.J., Anastasiadis P.Z., Storz P.. ( 2013;). Protein kinase D1-mediated phosphorylations regulate vasodilator-stimulated phosphoprotein (VASP) localization and cell migration. J Biol Chem 288: 24382–24393 [CrossRef] [PubMed].
    [Google Scholar]
  17. Dragoi A.M., Agaisse H.. ( 2014;). The serine/threonine kinase STK11 promotes Shigella flexneri dissemination through establishment of cell-cell contacts competent for tyrosine kinase signaling. Infect Immun 82: 4447–4457 [CrossRef] [PubMed].
    [Google Scholar]
  18. Dragoi A.M., Agaisse H.. ( 2015;). The class II phosphatidylinositol 3-phosphate kinase PIK3C2A promotes Shigella flexneri dissemination through formation of vacuole-like protrusions. Infect Immun 83: 1695–1704 [CrossRef] [PubMed].
    [Google Scholar]
  19. Fukumatsu M., Ogawa M., Arakawa S., Suzuki M., Nakayama K., Shimizu S., Kim M., Mimuro H., Sasakawa C.. ( 2012;). Shigella targets epithelial tricellular junctions and uses a noncanonical clathrin-dependent endocytic pathway to spread between cells. Cell Host Microbe 11: 325–336 [CrossRef] [PubMed].
    [Google Scholar]
  20. Gertler F.B., Niebuhr K., Reinhard M., Wehland J., Soriano P.. ( 1996;). Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87: 227–239 [CrossRef] [PubMed].
    [Google Scholar]
  21. Goldberg M.B.. ( 2001;). Actin-based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev 65: 595–626 [CrossRef] [PubMed].
    [Google Scholar]
  22. Gouin E., Gantelet H., Egile C., Lasa I., Ohayon H., Villiers V., Gounon P., Sansonetti P.J., Cossart P.. ( 1999;). A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J Cell Sci 112: 1697–1708 [PubMed].
    [Google Scholar]
  23. Gupton S.L., Riquelme D., Hughes-Alford S.K., Tadros J., Rudina S.S., Hynes R.O., Lauffenburger D., Gertler F.B.. ( 2012;). Mena binds α5 integrin directly and modulates α5β1 function. J Cell Biol 198: 657–676 [CrossRef] [PubMed].
    [Google Scholar]
  24. Hansen S.D., Mullins R.D.. ( 2010;). VASP is a processive actin polymerase that requires monomeric actin for barbed end association. J Cell Biol 191: 571–584 [CrossRef] [PubMed].
    [Google Scholar]
  25. Havrylenko S., Noguera P., Abou-Ghali M., Manzi J., Faqir F., Lamora A., Guérin C., Blanchoin L., Plastino J.. ( 2015;). WAVE binds Ena/VASP for enhanced Arp2/3 complex-based actin assembly. Mol Biol Cell 26: 55–65 [CrossRef] [PubMed].
    [Google Scholar]
  26. Heindl J.E., Saran I., Yi C.R., Lesser C.F., Goldberg M.B.. ( 2010;). Requirement for formin-induced actin polymerization during spread of Shigella flexneri. Infect Immun 78: 193–203 [CrossRef] [PubMed].
    [Google Scholar]
  27. Hoffman L.M., Jensen C.C., Kloeker S., Wang C.L., Yoshigi M., Beckerle M.C.. ( 2006;). Genetic ablation of zyxin causes Mena/VASP mislocalization, increased motility, and deficits in actin remodeling. J Cell Biol 172: 771–782 [CrossRef] [PubMed].
    [Google Scholar]
  28. Ireton K.. ( 2013;). Molecular mechanisms of cell-cell spread of intracellular bacterial pathogens. Open Biol 3: 130079 [CrossRef] [PubMed].
    [Google Scholar]
  29. Kapushesky M., Adamusiak T., Burdett T., Culhane A., Farne A., Filippov A., Holloway E., Klebanov A., Kryvych N., other authors. ( 2012;). Gene Expression Atlas update – a value-added database of microarray and sequencing-based functional genomics experiments. Nucleic Acids Res 40: (D1), D1077–D1081 [CrossRef] [PubMed].
    [Google Scholar]
  30. Ke Y., Tan Y., Wei N., Yang F., Yang H., Cao S., Wang X., Wang J., Han Y., other authors. ( 2015;). Yersinia protein kinase A phosphorylates vasodilator-stimulated phosphoprotein to modify the host cytoskeleton. Cell Microbiol 17: 473–485 [CrossRef] [PubMed].
    [Google Scholar]
  31. Kespichayawattana W., Rattanachetkul S., Wanun T., Utaisincharoen P., Sirisinha S.. ( 2000;). Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect Immun 68: 5377–5384 [CrossRef] [PubMed].
    [Google Scholar]
  32. Kim M., Ogawa M., Fujita Y., Yoshikawa Y., Nagai T., Koyama T., Nagai S., Lange A., Fässler R., Sasakawa C.. ( 2009;). Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature 459: 578–582 [CrossRef] [PubMed].
    [Google Scholar]
  33. Knauer O., Binai N.A., Carra G., Beckhaus T., Hanschmann K.M., Renné T., Backert S., Karas M., Wessler S.. ( 2008;). Differential phosphoproteome profiling reveals a functional role for VASP in Helicobacter pylori-induced cytoskeleton turnover in gastric epithelial cells. Cell Microbiol 10: 2285–2296 [CrossRef] [PubMed].
    [Google Scholar]
  34. Krause M., Dent E.W., Bear J.E., Loureiro J.J., Gertler F.B.. ( 2003;). Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 19: 541–564 [CrossRef] [PubMed].
    [Google Scholar]
  35. Krause M., Leslie J.D., Stewart M., Lafuente E.M., Valderrama F., Jagannathan R., Strasser G.A., Rubinson D.A., Liu H., other authors. ( 2004;). Lamellipodin, an Ena/VASP ligand, is implicated in the regulation of lamellipodial dynamics. Dev Cell 7: 571–583 [CrossRef] [PubMed].
    [Google Scholar]
  36. Kuehl C.J., Dragoi A.M., Agaisse H.. ( 2014;). The Shigella flexneri type 3 secretion system is required for tyrosine kinase-dependent protrusion resolution, and vacuole escape during bacterial dissemination. PLoS One 9: e112738 [CrossRef] [PubMed].
    [Google Scholar]
  37. Labrec E.H., Schneider H., Magnani T.J., Formal S.B.. ( 1964;). Epithelial cell penetration as an essential step in the pathogenesis of bacillary dysentery. J Bacteriol 88: 1503–1518 [PubMed].
    [Google Scholar]
  38. Lambrechts A., Kwiatkowski A.V., Lanier L.M., Bear J.E., Vandekerckhove J., Ampe C., Gertler F.B.. ( 2000;). cAMP-dependent protein kinase phosphorylation of EVL, a Mena/VASP relative, regulates its interaction with actin and SH3 domains. J Biol Chem 275: 36143–36151 [CrossRef] [PubMed].
    [Google Scholar]
  39. Lindsay S.L., Ramsey S., Aitchison M., Renné T., Evans T.J.. ( 2007;). Modulation of lamellipodial structure and dynamics by NO-dependent phosphorylation of VASP Ser239. J Cell Sci 120: 3011–3021 [CrossRef] [PubMed].
    [Google Scholar]
  40. Lo S.H.. ( 2006;). Focal adhesions: what's new inside. Dev Biol 294: 280–291 [CrossRef] [PubMed].
    [Google Scholar]
  41. Loureiro J.J., Rubinson D.A., Bear J.E., Baltus G.A., Kwiatkowski A.V., Gertler F.B.. ( 2002;). Critical roles of phosphorylation and actin binding motifs, but not the central proline-rich region, for Ena/vasodilator-stimulated phosphoprotein (VASP) function during cell migration. Mol Biol Cell 13: 2533–2546 [CrossRef] [PubMed].
    [Google Scholar]
  42. Mounier J., Laurent V., Hall A., Fort P., Carlier M.F., Sansonetti P.J., Egile C.. ( 1999;). Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J Cell Sci 112: 2069–2080 [PubMed].
    [Google Scholar]
  43. Niebuhr K., Ebel F., Frank R., Reinhard M., Domann E., Carl U.D., Walter U., Gertler F.B., Wehland J., Chakraborty T.. ( 1997;). A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J 16: 5433–5444 [CrossRef] [PubMed].
    [Google Scholar]
  44. Plotnikov S.V., Waterman C.M.. ( 2013;). Guiding cell migration by tugging. Curr Opin Cell Biol 25: 619–626 [CrossRef] [PubMed].
    [Google Scholar]
  45. Sansonetti P.J., Arondel J., Fontaine A., d'Hauteville H., Bernardini M.L.. ( 1991;). OmpB (osmo-regulation) and icsA (cell-to-cell spread) mutants of Shigella flexneri: vaccine candidates and probes to study the pathogenesis of shigellosis. Vaccine 9: 416–422 [CrossRef] [PubMed].
    [Google Scholar]
  46. Sansonetti P.J., Mounier J., Prévost M.C., Mège R.M.. ( 1994;). Cadherin expression is required for the spread of Shigella flexneri between epithelial cells. Cell 76: 829–839 [CrossRef] [PubMed].
    [Google Scholar]
  47. Skoble J., Auerbuch V., Goley E.D., Welch M.D., Portnoy D.A.. ( 2001;). Pivotal role of VASP in Arp2/3 complex-mediated actin nucleation, actin branch-formation, and Listeria monocytogenes motility. J Cell Biol 155: 89–100 [CrossRef] [PubMed].
    [Google Scholar]
  48. Stamm L.M., Morisaki J.H., Gao L.Y., Jeng R.L., McDonald K.L., Roth R., Takeshita S., Heuser J., Welch M.D., Brown E.J.. ( 2003;). Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J Exp Med 198: 1361–1368 [CrossRef] [PubMed].
    [Google Scholar]
  49. Teysseire N., Chiche-Portiche C., Raoult D.. ( 1992;). Intracellular movements of Rickettsia conorii and R. typhi based on actin polymerization. Res Microbiol 143: 821–829 [CrossRef] [PubMed].
    [Google Scholar]
  50. Theriot J.A., Mitchison T.J., Tilney L.G., Portnoy D.A.. ( 1992;). The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357: 257–260 [CrossRef] [PubMed].
    [Google Scholar]
  51. Tilney M.S., Tilney L.G., Stephens R.E., Merte C., Drenckhahn D., Cotanche D.A., Bretscher A.. ( 1989;). Preliminary biochemical characterization of the stereocilia and cuticular plate of hair cells of the chick cochlea. J Cell Biol 109: 1711–1723 [CrossRef] [PubMed].
    [Google Scholar]
  52. Van Kirk L.S., Hayes S.F., Heinzen R.A.. ( 2000;). Ultrastructure of Rickettsia rickettsii actin tails and localization of cytoskeletal proteins. Infect Immun 68: 4706–4713 [CrossRef] [PubMed].
    [Google Scholar]
  53. Vehlow A., Soong D., Vizcay-Barrena G., Bodo C., Law A.L., Perera U., Krause M.. ( 2013;). Endophilin, Lamellipodin, and Mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis. EMBO J 32: 2722–2734 [CrossRef] [PubMed].
    [Google Scholar]
  54. Welch M.D., Iwamatsu A., Mitchison T.J.. ( 1997;). Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385: 265–269 [CrossRef] [PubMed].
    [Google Scholar]
  55. Welch M.D., Rosenblatt J., Skoble J., Portnoy D.A., Mitchison T.J.. ( 1998;). Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281: 105–108 [CrossRef] [PubMed].
    [Google Scholar]
  56. Zhuang S., Nguyen G.T., Chen Y., Gudi T., Eigenthaler M., Jarchau T., Walter U., Boss G.R., Pilz R.B.. ( 2004;). Vasodilator-stimulated phosphoprotein activation of serum-response element-dependent transcription occurs downstream of RhoA and is inhibited by cGMP-dependent protein kinase phosphorylation. J Biol Chem 279: 10397–10407 [CrossRef] [PubMed].
    [Google Scholar]
  57. Zimmermann J., Labudde D., Jarchau T., Walter U., Oschkinat H., Ball L.J.. ( 2002;). Relaxation, equilibrium oligomerization, and molecular symmetry of the VASP (336-380) EVH2 tetramer. Biochemistry 41: 11143–11151 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000173
Loading
/content/journal/micro/10.1099/mic.0.000173
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error