Several members of the genus are biocontrol agents of soil-borne fungal plant pathogens. The effectiveness of biocontrol agents depends heavily on how they perform in the complex field environment. Therefore, the ability to monitor and track within the environment is essential to understanding biocontrol efficacy. The objectives of this work were to: (a) identify key genes involved in sp. ‘ type B’ morphogenesis; (b) develop a robust RNA isolation method from soil; and (c) develop molecular marker assays for characterizing morphogenesis whilst in the soil environment. Four cDNA libraries corresponding to conidia, germination, vegetative growth and conidiogenesis were created, and the genes identified by sequencing. Stage specificity of the different genes was confirmed by either Northern blot or quantitative reverse-transcriptase PCR (qRT-PCR) analysis using RNA from the four stages. , a conidial-specific gene, was observed in conidia, as well as one gene also involved in subsequent stages of germination (-lactate/malate dehydrogenase encoding gene). The germination stage revealed high expression rates of genes involved in amino acid and protein biosynthesis, while in the vegetative-growth stage, genes involved in differentiation, including the mitogen-activated protein kinase kinase similar to Kpp7 from and the orthologue to from , were preferentially expressed. Genes involved in cell-wall synthesis were expressed during conidiogenesis. We standardized total RNA isolation from sp. ‘ type B’ growing in soil and then examined the expression profiles of selected genes using qRT-PCR. The results suggested that the relative expression patterns were cyclic and not accumulative.


Article metrics loading...

Loading full text...

Full text loading...



  1. Adams T.H., Wieser J.K., Yu J.H. (1998). Asexual sporulation in Aspergillus nidulans Microbiol Mol Biol Rev 623554[PubMed]. [Google Scholar]
  2. Bae Y.S., Knudsen G.R. (2005). Soil microbial biomass influence on growth and biocontrol efficacy of Trichoderma harzianum Biol Control 32236242 [View Article]. [Google Scholar]
  3. Bayram O., Braus G.H. (2012). Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteinsFEMS Microbiol Rev 36124 [View Article][PubMed]. [Google Scholar]
  4. Berg G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agricultureAppl Microbiol Biotechnol 841118 [View Article][PubMed]. [Google Scholar]
  5. Borneman A.R., Hynes M.J., Andrianopoulos A. (2002). A basic helix-loop-helix protein with similarity to the fungal morphological regulators, Phd1p, Efg1p and StuA, controls conidiation but not dimorphic growth in Penicillium marneffei Mol Microbiol 44621631 [View Article][PubMed]. [Google Scholar]
  6. Braus G.H., Sasse C., Krappmann S. (2006). Amino acid acquisition, cross-pathway control, and virulence in Aspergillus Med Mycol 44(Suppl.1), S91S94 [View Article]. [Google Scholar]
  7. Breakspear A., Momany M. (2007). Aspergillus nidulans conidiation genes dewA, fluG, and stuA are differentially regulated in early vegetative growthEukaryot Cell 616971700 [View Article][PubMed]. [Google Scholar]
  8. Carreras-Villaseñor N., Sánchez-Arreguín J.A., Herrera-Estrella A.H. (2012). Trichoderma: sensing the environment for survival and dispersalMicrobiology 158316 [View Article][PubMed]. [Google Scholar]
  9. Casas-Flores S., Rios-Momberg M., Bibbins M., Ponce-Noyola P., Herrera-Estrella A. (2004). BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride Microbiology 15035613569 [View Article][PubMed]. [Google Scholar]
  10. Choi Y.E., Goodwin S.B. (2011). MVE1, encoding the velvet gene product homolog in Mycosphaerella graminicola, is associated with aerial mycelium formation, melanin biosynthesis, hyphal swelling, and light signalingAppl Environ Microbiol 77942953 [View Article][PubMed]. [Google Scholar]
  11. d'Enfert C., Fontaine T. (1997). Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehaloseMol Microbiol 24203216 [View Article][PubMed]. [Google Scholar]
  12. Daniel R. (2011). Soil-based metagenomics. In Handbook of Molecular Microbial Ecology II, pp. 8192. Edited by de Bruijn F. J. Hoboken, NJWiley.[CrossRef] [Google Scholar]
  13. Dineen S.M., Aranda R. IV, Dietz M.E., Anders D.L., Robertson J.M. (2010). Evaluation of commercial RNA extraction kits for the isolation of viral MS2 RNA from soilJ Virol Methods 1684450 [View Article][PubMed]. [Google Scholar]
  14. Dreyer J., Eichhorn H., Friedlin E., Kürnsteiner H., Kück U. (2007). A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum Appl Environ Microbiol 7334123422 [View Article][PubMed]. [Google Scholar]
  15. Dvir S., Velten L., Sharon E., Zeevi D., Carey L.B., Weinberger A., Segal E. (2013). Deciphering the rules by which 5′-UTR sequences affect protein expression in yeastProc Natl Acad Sci U S A 110E2792E2801 [View Article][PubMed]. [Google Scholar]
  16. Ebbole D.J., Paluh J.L., Plamann M., Sachs M.S., Yanofsky C. (1991). cpc-1, the general regulatory gene for genes of amino acid biosynthesis in Neurospora crassa, is differentially expressed during the asexual life cycleMol Cell Biol 11928934[PubMed].[CrossRef] [Google Scholar]
  17. Fang C., Xu T., Ye C., Huang L., Wang Q., Lin W. (2014). Method for RNA extraction and cDNA library construction from microbes in crop rhizosphere soilWorld J Microbiol Biotechnol 30783789 [View Article][PubMed]. [Google Scholar]
  18. Fillinger S., Ruijter G., Tamás M.J., Visser J., Thevelein J.M., d'Enfert C. (2001). Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans Mol Microbiol 39145157 [View Article][PubMed]. [Google Scholar]
  19. Fu J., Wu J., Jiang J., Wang Z., Ma Z. (2013). Cystathionine gamma-synthase is essential for methionine biosynthesis in Fusarium graminearum Fungal Biol 1171321 [View Article][PubMed]. [Google Scholar]
  20. Griffin G.J. (1976). Roles of low pH, carbon and inorganic nitrogen source use in chlamydospore formation by Fusarium solani Can J Microbiol 2213811389 [View Article][PubMed]. [Google Scholar]
  21. Griffiths R.I., Whiteley A.S., O'Donnell A.G., Bailey M.J. (2000). Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community compositionAppl Environ Microbiol 6654885491 [View Article][PubMed]. [Google Scholar]
  22. Gunnigle E., Ramond J.B., Frossard A., Seeley M., Cowan D. (2014). A sequential co-extraction method for DNA, RNA and protein recovery from soil for future system-based approachesJ Microbiol Methods 103118123 [View Article][PubMed]. [Google Scholar]
  23. Hacham Y., Gophna U., Amir R. (2003). In vivo analysis of various substrates utilized by cystathionine γ-synthase and O-acetylhomoserine sulfhydrylase in methionine biosynthesisMol Biol Evol 2015131520 [View Article][PubMed]. [Google Scholar]
  24. Hahn D., Kester R., Starrenburg M.J., Akkermans A.D. (1990). Extraction of ribosomal RNA from soil for detection of Frankia with oligonucleotide probesArch Microbiol 154329335[PubMed].[CrossRef] [Google Scholar]
  25. Hardham A.R. (2001). Investigations of oomycete cell biology. In Molecular and Cell Biology of Filamentous Fungi: a Practical Approach, pp. 127155. Edited by Talbot N. OxfordOxford University Press. [Google Scholar]
  26. Harman G.E. (2006). Overview of mechanisms and uses of Trichoderma sppPhytopathology 96190194 [View Article][PubMed]. [Google Scholar]
  27. Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. (2004). Trichoderma species - opportunistic, avirulent plant symbiontsNat Rev Microbiol 24356 [View Article][PubMed]. [Google Scholar]
  28. Hayer K., Stratford M., Archer D.B. (2013). Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger Appl Environ Microbiol 7969246931 [View Article][PubMed]. [Google Scholar]
  29. Hermosa R., Viterbo A., Chet I., Monte E. (2012). Plant-beneficial effects of Trichoderma and of its genesMicrobiology 1581725 [View Article][PubMed]. [Google Scholar]
  30. Hermosa R., Rubio M.B., Cardoza R.E., Nicolás C., Monte E., Gutiérrez S. (2013). The contribution of Trichoderma to balancing the costs of plant growth and defenseInt Microbiol 166980[PubMed]. [Google Scholar]
  31. Hernández-Oñate M.A., Esquivel-Naranjo E.U., Mendoza-Mendoza A., Stewart A., Herrera-Estrella A.H. (2012). An injury-response mechanism conserved across kingdoms determines entry of the fungus Trichoderma atroviride into developmentProc Natl Acad Sci U S A 1091491814923 [View Article][PubMed]. [Google Scholar]
  32. Hoff B., Kamerewerd J., Sigl C., Mitterbauer R., Zadra I., Kürnsteiner H., Kück U. (2010). Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum Eukaryot Cell 912361250 [View Article][PubMed]. [Google Scholar]
  33. Hohmann P., Jones E.E., Hill R.A., Stewart A. (2012). Ecological studies of the bio-inoculant Trichoderma hamatum LU592 in the root system of Pinus radiata FEMS Microbiol Ecol 80709721 [View Article][PubMed]. [Google Scholar]
  34. Holyoake A., O'Sullivan P., Pollock R., Best T., Watanabe J., Kajita Y., Matsui Y., Ito M., Nishiyama H., other authors. (2008). Development of a multiplex RNA urine test for the detection and stratification of transitional cell carcinoma of the bladderClin Cancer Res 14742749 [View Article][PubMed]. [Google Scholar]
  35. Hood H.M., Neafsey D.E., Galagan J., Sachs M.S. (2009). Evolutionary roles of upstream open reading frames in mediating gene regulation in fungiAnnu Rev Microbiol 63385409 [View Article][PubMed]. [Google Scholar]
  36. Kalinˇák M., Šimkovič M., Zˇemla P., Matata M., Molnár T., Liptaj T., Varečka L., Hudecová D. (2014). Changes in metabolome and in enzyme activities during germination of Trichoderma atroviride conidiaFEMS Microbiol Lett 357201207[PubMed]. [Google Scholar]
  37. Karimi Aghcheh R., Németh Z., Atanasova L., Fekete E., Paholcsek M., Sándor E., Aquino B., Druzhinina I.S., Karaffa L., Kubicek C.P. (2014). The VELVET A orthologue VEL1 of Trichoderma reesei regulates fungal development and is essential for cellulase gene expressionPLoS One 9e112799 [View Article][PubMed]. [Google Scholar]
  38. Kondrashov N., Pusic A., Stumpf C.R., Shimizu K., Hsieh A.C., Xue S., Ishijima J., Shiroishi T., Barna M. (2011). Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterningCell 145383397 [View Article][PubMed]. [Google Scholar]
  39. Kopke K., Hoff B., Bloemendal S., Katschorowski A., Kamerewerd J., Kück U. (2013). Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiationEukaryot Cell 12299310 [View Article][PubMed]. [Google Scholar]
  40. Kredics L., Hatvani L., Naeimi S., Körmöczi P., Manczinger L., Vágvölgyi C., Druzhinina I. (2014). Biodiversity of the genus Hypocrea/Trichoderma in different habitats. In Biotechnology and Biology of Trichoderma, pp. 324. Edited by Gupta V. K., Schmoll M., Herrera-Estrella A., Upadhyay R. S., Druzhinina I., Tuohy M. G. AmsterdamElsevier [View Article]. [Google Scholar]
  41. Lee B., Yoshida Y., Hasunuma K. (2009). Nucleoside diphosphate kinase-1 regulates hyphal development via the transcriptional regulation of catalase in Neurospora crassa FEBS Lett 58332913295 [View Article][PubMed]. [Google Scholar]
  42. Lewis J.A., Papavizas G.C. (1983). Production of chlamydospores and conidia by Trichoderma spp in liquid and solid growth mediaSoil Biol Biochem 15351357 [View Article]. [Google Scholar]
  43. Lillis L., Doyle E., Clipson N. (2009). Comparison of DNA- and RNA-based bacterial community structures in soil exposed to 2,4-dichlorophenolJ Appl Microbiol 10718831893 [View Article][PubMed]. [Google Scholar]
  44. Lin X., Heitman J. (2005). Chlamydospore formation during hyphal growth in Cryptococcus neoformans Eukaryot Cell 417461754 [View Article][PubMed]. [Google Scholar]
  45. Linder M.B., Szilvay G.R., Nakari-Setälä T., Penttilä M.E. (2005). Hydrophobins: the protein-amphiphiles of filamentous fungiFEMS Microbiol Rev 29877896 [View Article][PubMed]. [Google Scholar]
  46. Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2( − ΔΔC T) methodMethods 25402408 [View Article][PubMed]. [Google Scholar]
  47. López-Berges M.S., Hera C., Sulyok M., Schäfer K., Capilla J., Guarro J., Di Pietro A. (2013). The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hostsMol Microbiol 874965 [View Article][PubMed]. [Google Scholar]
  48. Lorito M., Woo S.L., Harman G.E., Monte E. (2010). Translational research on Trichoderma: from ’omics to the fieldAnnu Rev Phytopathol 48395417 [View Article][PubMed]. [Google Scholar]
  49. McLean K.L., Swaminathan J., Frampton C.M., Hunt J.S., Ridgway H.J., Stewart A. (2005). Effect of formulation on the rhizosphere competence and biocontrol ability of Trichoderma atroviride C52Plant Pathol 54212218 [View Article]. [Google Scholar]
  50. Medina-Castellanos E., Esquivel-Naranjo E.U., Heil M., Herrera-Estrella A. (2014). Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride Front Plant Sci 5659 [View Article][PubMed]. [Google Scholar]
  51. Mendes R., Garbeva P., Raaijmakers J.M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganismsFEMS Microbiol Rev 37634663 [View Article][PubMed]. [Google Scholar]
  52. Mendoza-Mendoza A., Pozo M.J., Grzegorski D., Martínez P., García J.M., Olmedo-Monfil V., Cortés C., Kenerley C., Herrera-Estrella A. (2003). Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinaseProc Natl Acad Sci U S A 1001596515970 [View Article][PubMed]. [Google Scholar]
  53. Mendoza-Mendoza A., Rosales-Saavedra T., Cortés C., Castellanos-Juárez V., Martínez P., Herrera-Estrella A. (2007). The MAP kinase TVK1 regulates conidiation, hydrophobicity and the expression of genes encoding cell wall proteins in the fungus Trichoderma virens Microbiology 15321372147 [View Article][PubMed]. [Google Scholar]
  54. Merhej J., Urban M., Dufresne M., Hammond-Kosack K.E., Richard-Forget F., Barreau C. (2012). The velvet gene FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum Mol Plant Pathol 13363374 [View Article][PubMed]. [Google Scholar]
  55. Mignone F., Gissi C., Liuni S., Pesole G. (2002). Untranslated regions of mRNAsGenome Biol 3reviews00041reviews000410 [View Article][PubMed]. [Google Scholar]
  56. Mikkonen A., Santalahti M., Lappi K., Pulkkinen A.M., Montonen L., Suominen L. (2014). Bacterial and archaeal communities in long-term contaminated surface and subsurface soil evaluated through coextracted RNA and DNAFEMS Microbiol Ecol 90103114 [View Article][PubMed]. [Google Scholar]
  57. Miller K.Y., Wu J., Miller B.L. (1992). StuA is required for cell pattern formation in Aspergillus Genes Dev 617701782 [View Article][PubMed]. [Google Scholar]
  58. Monfil V.O., Casas-Flores S. (2014). Molecular mechanisms of biocontrol in Trichoderma and their applications in agriculture. In Biotechnology and Biology of Trichoderma, pp. 429453. Edited by Gupta V. K., Schmoll M., Herrera-Estrella A., Upadhyay R. S., Druzhinina I., Tuohy M. G. AmsterdamElsevier [View Article]. [Google Scholar]
  59. Montero-Barrientos M., Hermosa R., Cardoza R.E., Gutiérrez S., Monte E. (2011). Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum Appl Environ Microbiol 7730093016 [View Article][PubMed]. [Google Scholar]
  60. Morillon A., Springer M., Lesage P. (2000). Activation of the Kss1 invasive-filamentous growth pathway induces Ty1 transcription and retrotransposition in Saccharomyces cerevisiae Mol Cell Biol 2057665776 [View Article][PubMed]. [Google Scholar]
  61. Mukherjee P.K., Kenerley C.M. (2010). Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1Appl Environ Microbiol 7623452352 [View Article][PubMed]. [Google Scholar]
  62. Mukherjee P.K., Latha J., Hadar R., Horwitz B.A. (2003). TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the darkEukaryot Cell 2446455 [View Article][PubMed]. [Google Scholar]
  63. Mukherjee P.K., Horwitz B.A., Herrera-Estrella A., Schmoll M., Kenerley C.M. (2013). Trichoderma research in the genome eraAnnu Rev Phytopathol 51105129 [View Article][PubMed]. [Google Scholar]
  64. Müller P., Aichinger C., Feldbrügge M., Kahmann R. (1999). The MAP kinase kpp2 regulates mating and pathogenic development in Ustilago maydis Mol Microbiol 3410071017 [View Article][PubMed]. [Google Scholar]
  65. Müller P., Weinzierl G., Brachmann A., Feldbrügge M., Kahmann R. (2003). Mating and pathogenic development of the Smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascadeEukaryot Cell 211871199 [View Article][PubMed]. [Google Scholar]
  66. Nicolás C., Hermosa R., Rubio B., Mukherjee P.K., Monte E. (2014). Trichoderma genes in plants for stress tolerance - status and prospectsPlant Sci 2287178 [View Article][PubMed]. [Google Scholar]
  67. Nishikawa M., Hosokawa K., Ishiguro M., Minamioka H., Tamura K., Hara-Nishimura I., Takahashi Y., Shimazaki K., Imai H. (2008). Degradation of sphingoid long-chain base 1-phosphates (LCB-1Ps): functional characterization and expression of AtDPL1 encoding LCB-1P lyase involved in the dehydration stress response in Arabidopsis Plant Cell Physiol 4917581763 [View Article][PubMed]. [Google Scholar]
  68. Novinscak A., Filion M. (2011). Effect of soil clay content on RNA isolation and on detection and quantification of bacterial gene transcripts in soil by quantitative reverse transcription-PCRAppl Environ Microbiol 7762496252 [View Article][PubMed]. [Google Scholar]
  69. Ohara T., Tsuge T. (2004). FoSTUA, encoding a basic helix-loop-helix protein, differentially regulates development of three kinds of asexual spores, macroconidia, microconidia, and chlamydospores, in the fungal plant pathogen Fusarium oxysporum Eukaryot Cell 314121422 [View Article][PubMed]. [Google Scholar]
  70. Orr K.A., Knudsen G.R. (2004). Use of green fluorescent protein and image analysis to quantify proliferation of Trichoderma harzianum in nonsterile soilPhytopathology 9413831389 [View Article][PubMed]. [Google Scholar]
  71. Osherov N., May G.S. (2001). The molecular mechanisms of conidial germinationFEMS Microbiol Lett 199153160 [View Article][PubMed]. [Google Scholar]
  72. Paluh J.L., Orbach M.J., Legerton T.L., Yanofsky C. (1988). The cross-pathway control gene of Neurospora crassa, cpc-1, encodes a protein similar to GCN4 of yeast and the DNA-binding domain of the oncogene v-jun-encoded proteinProc Natl Acad Sci U S A 8537283732 [View Article][PubMed]. [Google Scholar]
  73. Park H.S., Ni M., Jeong K.C., Kim Y.H., Yu J.H. (2012). The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans PLoS One 7e45935 [View Article][PubMed]. [Google Scholar]
  74. Pitzschke A. (2015). Modes of MAPK substrate recognition and controlTrends Plant Sci 204955 [View Article][PubMed]. [Google Scholar]
  75. Puyesky M., Benhamou N., Noyola P.P., Bauw G., Ziv T., Van Montagu M., Herrera-Estrella A., Horwitz B.A. (1999). Developmental regulation of cmp1, a gene encoding a multidomain conidiospore surface protein of Trichoderma Fungal Genet Biol 278899 [View Article][PubMed]. [Google Scholar]
  76. Rachfall N., Schmitt K., Bandau S., Smolinski N., Ehrenreich A., Valerius O., Braus G.H. (2013). RACK1/Asc1p, a ribosomal node in cellular signalingMol Cell Proteomics 1287105 [View Article][PubMed]. [Google Scholar]
  77. Rajesh T., Rajendhran J., Pushpam P.L., Gunasekaran P. (2011). Methods in metagenomic DNA, RNA, and protein isolation from soil. In Handbook of Molecular Microbial Ecology II, pp. 93107. Edited by de Bruijn F. J. Hoboken, NJWiley.[CrossRef] [Google Scholar]
  78. Reithner B., Schuhmacher R., Stoppacher N., Pucher M., Brunner K., Zeilinger S. (2007). Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protectionFungal Genet Biol 4411231133 [View Article][PubMed]. [Google Scholar]
  79. Roberts A.N., Yanofsky C. (1989). Genes expressed during conidiation in Neurospora crassa: characterization of con-8Nucleic Acids Res 17197214 [View Article][PubMed]. [Google Scholar]
  80. Rozen S., Skaletsky H. (2000). Primer3 on the WWW for general users and for biologist programmersMethods Mol Biol 132365386[PubMed]. [Google Scholar]
  81. Saba J.D., Hla T. (2004). Point-counterpoint of sphingosine 1-phosphate metabolismCirc Res 94724734 [View Article][PubMed]. [Google Scholar]
  82. Sarikaya Bayram O., Bayram O., Valerius O., Park H.S., Irniger S., Gerke J., Ni M., Han K.H., Yu J.H., Braus G.H. (2010). LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificityPLoS Genet 6e1001226 [View Article][PubMed]. [Google Scholar]
  83. Schuldt A. (2011). Gene expression: personalized ribosomesNat Rev Mol Cell Biol 12344345 [View Article][PubMed]. [Google Scholar]
  84. Schumacher J., Gautier A., Morgant G., Studt L., Ducrot P.H., Le Pêcheur P., Azeddine S., Fillinger S., Leroux P., other authors. (2013). A functional bikaverin biosynthesis gene cluster in rare strains of Botrytis cinerea is positively controlled by VELVETPLoS One 8e53729 [View Article][PubMed]. [Google Scholar]
  85. Schumacher J., Simon A., Cohrs K.C., Traeger S., Porquier A., Dalmais B., Viaud M., Tudzynski B. (2015). The VELVET complex in the gray mold fungus Botrytis cinerea: impact of BcLAE1 on differentiation, secondary metabolism and virulenceMol Plant Microbe Interact 28659674 [View Article][PubMed]. [Google Scholar]
  86. Selenska S., Klingmüller W. (1992). Direct recovery and molecular analysis of DNA and RNA from soilMicrob Releases 14146[PubMed]. [Google Scholar]
  87. Seong K.-Y., Zhao X., Xu J.-R., Güldener U., Kistler H.C. (2008). Conidial germination in the filamentous fungus Fusarium graminearum Fungal Genet Biol 45389399 [View Article][PubMed]. [Google Scholar]
  88. Sessitsch A., Gyamfi S., Stralis-Pavese N., Weilharter A., Pfeifer U. (2002). RNA isolation from soil for bacterial community and functional analysis: evaluation of different extraction and soil conservation protocolsJ Microbiol Methods 51171179 [View Article][PubMed]. [Google Scholar]
  89. Sharma S., Aneja M.K., Mayer J., Schloter M., Munch J.C. (2004). RNA fingerprinting of microbial community in the rhizosphere soil of grain legumesFEMS Microbiol Lett 240181186 [View Article][PubMed]. [Google Scholar]
  90. Sheppard D.C., Doedt T., Chiang L.Y., Kim H.S., Chen D., Nierman W.C., Filler S.G. (2005). The Aspergillus fumigatus StuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competenceMol Biol Cell 1658665879 [View Article][PubMed]. [Google Scholar]
  91. Sigl C., Haas H., Specht T., Pfaller K., Kürnsteiner H., Zadra I. (2011). Among developmental regulators StuA but not BrlA is essential for penicillin V production in Penicillium chrysogenum Appl Environ Microbiol 77972982 [View Article][PubMed]. [Google Scholar]
  92. Šimkovič M., Olejníková P., Matata M., Zˇemla P., Vilimová V., Farkašová L., Varečka L. (2015). Nutrient transport into germinating Trichoderma atroviride conidia and development of its driving forceMicrobiology 16112401250.[CrossRef] [Google Scholar]
  93. Son H., Lee J., Lee Y.W. (2012). Mannitol induces the conversion of conidia to chlamydospore-like structures that confer enhanced tolerance to heat, drought, and UV in Gibberella zeae Microbiol Res 167608615 [View Article][PubMed]. [Google Scholar]
  94. Springer M.L., Yanofsky C. (1992). Expression of con genes along the three sporulation pathways of Neurospora crassa Genes Dev 610521057 [View Article][PubMed]. [Google Scholar]
  95. Stewart A., Hill R. (2014). Applications of Trichoderma in plant growth promotion. In Biotechnology and Biology of Trichoderma, pp. 415428. Edited by Gupta V. K., Schmoll M., Herrera-Estrella A., Upadhyay R. S., Druzhinina I., Tuohy M. G. AmsterdamElsevier [View Article]. [Google Scholar]
  96. Steyaert J.M., Weld R.J., Loguercio L.L., Stewart A. (2010a). Rhythmic conidiation in the blue-light fungus Trichoderma pleuroticola Fungal Biol 114219223 [View Article][PubMed]. [Google Scholar]
  97. Steyaert J.M., Weld R.J., Mendoza-Mendoza A., Stewart A. (2010b). Reproduction without sex: conidiation in the filamentous fungus Trichoderma Microbiology 15628872900 [View Article][PubMed]. [Google Scholar]
  98. Steyaert J.M., Weld R.J., Stewart A. (2010c). Ambient pH intrinsically influences Trichoderma conidiation and colony morphologyFungal Biol 114198208 [View Article][PubMed]. [Google Scholar]
  99. Steyaert J.M., Weld R.J., Stewart A. (2010d). Isolate-specific conidiation in Trichoderma in response to different nitrogen sourcesFungal Biol 114179188 [View Article][PubMed]. [Google Scholar]
  100. Steyaert J.M., Weld R.J., Mendoza-Mendoza A., Kryštofová S., Šimkovič M., Varečka L., Stewart A. (2013). Asexual development in Trichoderma: from conidia to chlamydospores. In Trichoderma: Biology and Applications, pp. 87109. Edited by Mukherjee P. K., Horwitz B. A., Singh U. S., Mukherjee M., Schmoll M. IndiaCAB International [View Article]. [Google Scholar]
  101. Teutschbein J., Albrecht D., Pötsch M., Guthke R., Aimanianda V., Clavaud C., Latgé J.P., Brakhage A.A., Kniemeyer O. (2010). Proteome profiling and functional classification of intracellular proteins from conidia of the human-pathogenic mold Aspergillus fumigatus J Proteome Res 934273442 [View Article][PubMed]. [Google Scholar]
  102. Tong X., Zhang X., Plummer K.M., Stowell K.M., Sullivan P.A., Farley P.C. (2007). GcSTUA, an APSES transcription factor, is required for generation of appressorial turgor pressure and full pathogenicity of Glomerella cingulata Mol Plant Microbe Interact 2011021111 [View Article][PubMed]. [Google Scholar]
  103. Versaw W.K. (1995). A phosphate-repressible, high-affinity phosphate permease is encoded by the pho-5+ gene of Neurospora crassa Gene 153135139 [View Article][PubMed]. [Google Scholar]
  104. Wagemaker M.J., Eastwood D.C., van der Drift C., Jetten M.S., Burton K., Van Griensven L.J., Op den Camp H.J. (2007). Argininosuccinate synthetase and argininosuccinate lyase: two ornithine cycle enzymes from Agaricus bisporus Mycol Res 111493502 [View Article][PubMed]. [Google Scholar]
  105. Wang Y., Morimoto S., Ogawa N., Oomori T., Fujii T. (2009). An improved method to extract RNA from soil with efficient removal of humic acidsJ Appl Microbiol 10711681177 [View Article][PubMed]. [Google Scholar]
  106. Wang Y., Hayatsu M., Fujii T. (2012). Extraction of bacterial RNA from soil: challenges and solutionsMicrobes Environ 27111121 [View Article][PubMed]. [Google Scholar]
  107. Wilson D.N., Doudna Cate J.H. (2012). The structure and function of the eukaryotic ribosomeCold Spring Harb Perspect Biol 4a011536 [View Article][PubMed]. [Google Scholar]
  108. Xu H., Andi B., Qian J., West A.H., Cook P.F. (2006). The alpha-aminoadipate pathway for lysine biosynthesis in fungiCell Biochem Biophys 464364 [View Article][PubMed]. [Google Scholar]
  109. Yamamoto N., Matsuzaka Y., Kimura M., Matsuki H., Yanagisawa Y. (2009). Comparison of dry- and wet-based fine bead homogenizations to extract DNA from fungal sporesJ Biosci Bioeng 107464470 [View Article][PubMed]. [Google Scholar]
  110. Yamashiro C.T., Ebbole D.J., Lee B.U., Brown R.E., Bourland C., Madi L., Yanofsky C. (1996). Characterization of rco-1 of Neurospora crassa, a pleiotropic gene affecting growth and development that encodes a homolog of Tup1 of Saccharomyces cerevisiae Mol Cell Biol 1662186228[PubMed].[CrossRef] [Google Scholar]
  111. Zhang Y., Qu Z., Zheng W., Liu B., Wang X., Xue X., Xu L., Huang L., Han Q., other authors. (2008). Stage-specific gene expression during urediniospore germination in Puccinia striiformis f. sp tritici BMC Genomics 9203 [View Article][PubMed]. [Google Scholar]
  112. Zhao P.B., Ren A.Z., Li D.C. (2011). The FUS3/KSS1-type MAP kinase gene FPK1 is involved in hyphal growth, conidiation and plant infection of Fusarium proliferatum J Mol Microbiol Biotechnol 21110119 [View Article][PubMed]. [Google Scholar]
  113. Zhou X., Liao W.J., Liao J.M., Liao P., Lu H. (2015). Ribosomal proteins: functions beyond the ribosomeJ Mol Cell Biol 792104 [View Article][PubMed]. [Google Scholar]

Data & Media loading...


Supplementary Data

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error