1887

Abstract

Several members of the genus are biocontrol agents of soil-borne fungal plant pathogens. The effectiveness of biocontrol agents depends heavily on how they perform in the complex field environment. Therefore, the ability to monitor and track within the environment is essential to understanding biocontrol efficacy. The objectives of this work were to: (a) identify key genes involved in sp. ‘ type B’ morphogenesis; (b) develop a robust RNA isolation method from soil; and (c) develop molecular marker assays for characterizing morphogenesis whilst in the soil environment. Four cDNA libraries corresponding to conidia, germination, vegetative growth and conidiogenesis were created, and the genes identified by sequencing. Stage specificity of the different genes was confirmed by either Northern blot or quantitative reverse-transcriptase PCR (qRT-PCR) analysis using RNA from the four stages. , a conidial-specific gene, was observed in conidia, as well as one gene also involved in subsequent stages of germination (-lactate/malate dehydrogenase encoding gene). The germination stage revealed high expression rates of genes involved in amino acid and protein biosynthesis, while in the vegetative-growth stage, genes involved in differentiation, including the mitogen-activated protein kinase kinase similar to Kpp7 from and the orthologue to from , were preferentially expressed. Genes involved in cell-wall synthesis were expressed during conidiogenesis. We standardized total RNA isolation from sp. ‘ type B’ growing in soil and then examined the expression profiles of selected genes using qRT-PCR. The results suggested that the relative expression patterns were cyclic and not accumulative.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000167
2015-11-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2110.html?itemId=/content/journal/micro/10.1099/mic.0.000167&mimeType=html&fmt=ahah

References

  1. Adams T.H. , Wieser J.K. , Yu J.H. . ( 1998;). Asexual sporulation in Aspergillus nidulans . Microbiol Mol Biol Rev 62: 35–54 [PubMed].
    [Google Scholar]
  2. Bae Y.S. , Knudsen G.R. . ( 2005;). Soil microbial biomass influence on growth and biocontrol efficacy of Trichoderma harzianum . Biol Control 32: 236–242 [CrossRef].
    [Google Scholar]
  3. Bayram O. , Braus G.H. . ( 2012;). Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36: 1–24 [CrossRef] [PubMed].
    [Google Scholar]
  4. Berg G. . ( 2009;). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84: 11–18 [CrossRef] [PubMed].
    [Google Scholar]
  5. Borneman A.R. , Hynes M.J. , Andrianopoulos A. . ( 2002;). A basic helix-loop-helix protein with similarity to the fungal morphological regulators, Phd1p, Efg1p and StuA, controls conidiation but not dimorphic growth in Penicillium marneffei . Mol Microbiol 44: 621–631 [CrossRef] [PubMed].
    [Google Scholar]
  6. Braus G.H. , Sasse C. , Krappmann S. . ( 2006;). Amino acid acquisition, cross-pathway control, and virulence in Aspergillus . Med Mycol 44: (Suppl.1), S91–S94 [CrossRef].
    [Google Scholar]
  7. Breakspear A. , Momany M. . ( 2007;). Aspergillus nidulans conidiation genes dewA, fluG, and stuA are differentially regulated in early vegetative growth. Eukaryot Cell 6: 1697–1700 [CrossRef] [PubMed].
    [Google Scholar]
  8. Carreras-Villaseñor N. , Sánchez-Arreguín J.A. , Herrera-Estrella A.H. . ( 2012;). Trichoderma: sensing the environment for survival and dispersal. Microbiology 158: 3–16 [CrossRef] [PubMed].
    [Google Scholar]
  9. Casas-Flores S. , Rios-Momberg M. , Bibbins M. , Ponce-Noyola P. , Herrera-Estrella A. . ( 2004;). BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride . Microbiology 150: 3561–3569 [CrossRef] [PubMed].
    [Google Scholar]
  10. Choi Y.E. , Goodwin S.B. . ( 2011;). MVE1, encoding the velvet gene product homolog in Mycosphaerella graminicola, is associated with aerial mycelium formation, melanin biosynthesis, hyphal swelling, and light signaling. Appl Environ Microbiol 77: 942–953 [CrossRef] [PubMed].
    [Google Scholar]
  11. d'Enfert C. , Fontaine T. . ( 1997;). Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehalose. Mol Microbiol 24: 203–216 [CrossRef] [PubMed].
    [Google Scholar]
  12. Daniel R. . ( 2011;). Soil-based metagenomics. . In Handbook of Molecular Microbial Ecology II, pp. 81–92. Edited by de Bruijn F. J. . Hoboken, NJ: Wiley;.[CrossRef]
    [Google Scholar]
  13. Dineen S.M. , Aranda R. IV , Dietz M.E. , Anders D.L. , Robertson J.M. . ( 2010;). Evaluation of commercial RNA extraction kits for the isolation of viral MS2 RNA from soil. J Virol Methods 168: 44–50 [CrossRef] [PubMed].
    [Google Scholar]
  14. Dreyer J. , Eichhorn H. , Friedlin E. , Kürnsteiner H. , Kück U. . ( 2007;). A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum . Appl Environ Microbiol 73: 3412–3422 [CrossRef] [PubMed].
    [Google Scholar]
  15. Dvir S. , Velten L. , Sharon E. , Zeevi D. , Carey L.B. , Weinberger A. , Segal E. . ( 2013;). Deciphering the rules by which 5′-UTR sequences affect protein expression in yeast. Proc Natl Acad Sci U S A 110: E2792–E2801 [CrossRef] [PubMed].
    [Google Scholar]
  16. Ebbole D.J. , Paluh J.L. , Plamann M. , Sachs M.S. , Yanofsky C. . ( 1991;). cpc-1, the general regulatory gene for genes of amino acid biosynthesis in Neurospora crassa, is differentially expressed during the asexual life cycle. Mol Cell Biol 11: 928–934 [PubMed].[CrossRef]
    [Google Scholar]
  17. Fang C. , Xu T. , Ye C. , Huang L. , Wang Q. , Lin W. . ( 2014;). Method for RNA extraction and cDNA library construction from microbes in crop rhizosphere soil. World J Microbiol Biotechnol 30: 783–789 [CrossRef] [PubMed].
    [Google Scholar]
  18. Fillinger S. , Ruijter G. , Tamás M.J. , Visser J. , Thevelein J.M. , d'Enfert C. . ( 2001;). Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans . Mol Microbiol 39: 145–157 [CrossRef] [PubMed].
    [Google Scholar]
  19. Fu J. , Wu J. , Jiang J. , Wang Z. , Ma Z. . ( 2013;). Cystathionine gamma-synthase is essential for methionine biosynthesis in Fusarium graminearum . Fungal Biol 117: 13–21 [CrossRef] [PubMed].
    [Google Scholar]
  20. Griffin G.J. . ( 1976;). Roles of low pH, carbon and inorganic nitrogen source use in chlamydospore formation by Fusarium solani . Can J Microbiol 22: 1381–1389 [CrossRef] [PubMed].
    [Google Scholar]
  21. Griffiths R.I. , Whiteley A.S. , O'Donnell A.G. , Bailey M.J. . ( 2000;). Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66: 5488–5491 [CrossRef] [PubMed].
    [Google Scholar]
  22. Gunnigle E. , Ramond J.B. , Frossard A. , Seeley M. , Cowan D. . ( 2014;). A sequential co-extraction method for DNA, RNA and protein recovery from soil for future system-based approaches. J Microbiol Methods 103: 118–123 [CrossRef] [PubMed].
    [Google Scholar]
  23. Hacham Y. , Gophna U. , Amir R. . ( 2003;). In vivo analysis of various substrates utilized by cystathionine γ-synthase and O-acetylhomoserine sulfhydrylase in methionine biosynthesis. Mol Biol Evol 20: 1513–1520 [CrossRef] [PubMed].
    [Google Scholar]
  24. Hahn D. , Kester R. , Starrenburg M.J. , Akkermans A.D. . ( 1990;). Extraction of ribosomal RNA from soil for detection of Frankia with oligonucleotide probes. Arch Microbiol 154: 329–335 [PubMed].[CrossRef]
    [Google Scholar]
  25. Hardham A.R. . ( 2001;). Investigations of oomycete cell biology. . In Molecular and Cell Biology of Filamentous Fungi: a Practical Approach, pp. 127–155. Edited by Talbot N. . Oxford: Oxford University Press;.
    [Google Scholar]
  26. Harman G.E. . ( 2006;). Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96: 190–194 [CrossRef] [PubMed].
    [Google Scholar]
  27. Harman G.E. , Howell C.R. , Viterbo A. , Chet I. , Lorito M. . ( 2004;). Trichoderma species - opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2: 43–56 [CrossRef] [PubMed].
    [Google Scholar]
  28. Hayer K. , Stratford M. , Archer D.B. . ( 2013;). Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger . Appl Environ Microbiol 79: 6924–6931 [CrossRef] [PubMed].
    [Google Scholar]
  29. Hermosa R. , Viterbo A. , Chet I. , Monte E. . ( 2012;). Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158: 17–25 [CrossRef] [PubMed].
    [Google Scholar]
  30. Hermosa R. , Rubio M.B. , Cardoza R.E. , Nicolás C. , Monte E. , Gutiérrez S. . ( 2013;). The contribution of Trichoderma to balancing the costs of plant growth and defense. Int Microbiol 16: 69–80 [PubMed].
    [Google Scholar]
  31. Hernández-Oñate M.A. , Esquivel-Naranjo E.U. , Mendoza-Mendoza A. , Stewart A. , Herrera-Estrella A.H. . ( 2012;). An injury-response mechanism conserved across kingdoms determines entry of the fungus Trichoderma atroviride into development. Proc Natl Acad Sci U S A 109: 14918–14923 [CrossRef] [PubMed].
    [Google Scholar]
  32. Hoff B. , Kamerewerd J. , Sigl C. , Mitterbauer R. , Zadra I. , Kürnsteiner H. , Kück U. . ( 2010;). Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum . Eukaryot Cell 9: 1236–1250 [CrossRef] [PubMed].
    [Google Scholar]
  33. Hohmann P. , Jones E.E. , Hill R.A. , Stewart A. . ( 2012;). Ecological studies of the bio-inoculant Trichoderma hamatum LU592 in the root system of Pinus radiata . FEMS Microbiol Ecol 80: 709–721 [CrossRef] [PubMed].
    [Google Scholar]
  34. Holyoake A. , O'Sullivan P. , Pollock R. , Best T. , Watanabe J. , Kajita Y. , Matsui Y. , Ito M. , Nishiyama H. , other authors . ( 2008;). Development of a multiplex RNA urine test for the detection and stratification of transitional cell carcinoma of the bladder. Clin Cancer Res 14: 742–749 [CrossRef] [PubMed].
    [Google Scholar]
  35. Hood H.M. , Neafsey D.E. , Galagan J. , Sachs M.S. . ( 2009;). Evolutionary roles of upstream open reading frames in mediating gene regulation in fungi. Annu Rev Microbiol 63: 385–409 [CrossRef] [PubMed].
    [Google Scholar]
  36. Kalinˇák M. , Šimkovič M. , Zˇemla P. , Matata M. , Molnár T. , Liptaj T. , Varečka L. , Hudecová D. . ( 2014;). Changes in metabolome and in enzyme activities during germination of Trichoderma atroviride conidia. FEMS Microbiol Lett 357: 201–207 [PubMed].
    [Google Scholar]
  37. Karimi Aghcheh R. , Németh Z. , Atanasova L. , Fekete E. , Paholcsek M. , Sándor E. , Aquino B. , Druzhinina I.S. , Karaffa L. , Kubicek C.P. . ( 2014;). The VELVET A orthologue VEL1 of Trichoderma reesei regulates fungal development and is essential for cellulase gene expression. PLoS One 9: e112799 [CrossRef] [PubMed].
    [Google Scholar]
  38. Kondrashov N. , Pusic A. , Stumpf C.R. , Shimizu K. , Hsieh A.C. , Xue S. , Ishijima J. , Shiroishi T. , Barna M. . ( 2011;). Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell 145: 383–397 [CrossRef] [PubMed].
    [Google Scholar]
  39. Kopke K. , Hoff B. , Bloemendal S. , Katschorowski A. , Kamerewerd J. , Kück U. . ( 2013;). Members of the Penicillium chrysogenum velvet complex play functionally opposing roles in the regulation of penicillin biosynthesis and conidiation. Eukaryot Cell 12: 299–310 [CrossRef] [PubMed].
    [Google Scholar]
  40. Kredics L. , Hatvani L. , Naeimi S. , Körmöczi P. , Manczinger L. , Vágvölgyi C. , Druzhinina I. . ( 2014;). Biodiversity of the genus Hypocrea/Trichoderma in different habitats. . In Biotechnology and Biology of Trichoderma, pp. 3–24. Edited by Gupta V. K. , Schmoll M. , Herrera-Estrella A. , Upadhyay R. S. , Druzhinina I. , Tuohy M. G. . Amsterdam: Elsevier; [CrossRef].
    [Google Scholar]
  41. Lee B. , Yoshida Y. , Hasunuma K. . ( 2009;). Nucleoside diphosphate kinase-1 regulates hyphal development via the transcriptional regulation of catalase in Neurospora crassa . FEBS Lett 583: 3291–3295 [CrossRef] [PubMed].
    [Google Scholar]
  42. Lewis J.A. , Papavizas G.C. . ( 1983;). Production of chlamydospores and conidia by Trichoderma spp in liquid and solid growth media. Soil Biol Biochem 15: 351–357 [CrossRef].
    [Google Scholar]
  43. Lillis L. , Doyle E. , Clipson N. . ( 2009;). Comparison of DNA- and RNA-based bacterial community structures in soil exposed to 2,4-dichlorophenol. J Appl Microbiol 107: 1883–1893 [CrossRef] [PubMed].
    [Google Scholar]
  44. Lin X. , Heitman J. . ( 2005;). Chlamydospore formation during hyphal growth in Cryptococcus neoformans . Eukaryot Cell 4: 1746–1754 [CrossRef] [PubMed].
    [Google Scholar]
  45. Linder M.B. , Szilvay G.R. , Nakari-Setälä T. , Penttilä M.E. . ( 2005;). Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29: 877–896 [CrossRef] [PubMed].
    [Google Scholar]
  46. Livak K.J. , Schmittgen T.D. . ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2( − ΔΔC T) method. Methods 25: 402–408 [CrossRef] [PubMed].
    [Google Scholar]
  47. López-Berges M.S. , Hera C. , Sulyok M. , Schäfer K. , Capilla J. , Guarro J. , Di Pietro A. . ( 2013;). The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Microbiol 87: 49–65 [CrossRef] [PubMed].
    [Google Scholar]
  48. Lorito M. , Woo S.L. , Harman G.E. , Monte E. . ( 2010;). Translational research on Trichoderma: from ’omics to the field. Annu Rev Phytopathol 48: 395–417 [CrossRef] [PubMed].
    [Google Scholar]
  49. McLean K.L. , Swaminathan J. , Frampton C.M. , Hunt J.S. , Ridgway H.J. , Stewart A. . ( 2005;). Effect of formulation on the rhizosphere competence and biocontrol ability of Trichoderma atroviride C52. Plant Pathol 54: 212–218 [CrossRef].
    [Google Scholar]
  50. Medina-Castellanos E. , Esquivel-Naranjo E.U. , Heil M. , Herrera-Estrella A. . ( 2014;). Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride . Front Plant Sci 5: 659 [CrossRef] [PubMed].
    [Google Scholar]
  51. Mendes R. , Garbeva P. , Raaijmakers J.M. . ( 2013;). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37: 634–663 [CrossRef] [PubMed].
    [Google Scholar]
  52. Mendoza-Mendoza A. , Pozo M.J. , Grzegorski D. , Martínez P. , García J.M. , Olmedo-Monfil V. , Cortés C. , Kenerley C. , Herrera-Estrella A. . ( 2003;). Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci U S A 100: 15965–15970 [CrossRef] [PubMed].
    [Google Scholar]
  53. Mendoza-Mendoza A. , Rosales-Saavedra T. , Cortés C. , Castellanos-Juárez V. , Martínez P. , Herrera-Estrella A. . ( 2007;). The MAP kinase TVK1 regulates conidiation, hydrophobicity and the expression of genes encoding cell wall proteins in the fungus Trichoderma virens . Microbiology 153: 2137–2147 [CrossRef] [PubMed].
    [Google Scholar]
  54. Merhej J. , Urban M. , Dufresne M. , Hammond-Kosack K.E. , Richard-Forget F. , Barreau C. . ( 2012;). The velvet gene FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum . Mol Plant Pathol 13: 363–374 [CrossRef] [PubMed].
    [Google Scholar]
  55. Mignone F. , Gissi C. , Liuni S. , Pesole G. . ( 2002;). Untranslated regions of mRNAs. Genome Biol 3: reviews00041–reviews000410 [CrossRef] [PubMed].
    [Google Scholar]
  56. Mikkonen A. , Santalahti M. , Lappi K. , Pulkkinen A.M. , Montonen L. , Suominen L. . ( 2014;). Bacterial and archaeal communities in long-term contaminated surface and subsurface soil evaluated through coextracted RNA and DNA. FEMS Microbiol Ecol 90: 103–114 [CrossRef] [PubMed].
    [Google Scholar]
  57. Miller K.Y. , Wu J. , Miller B.L. . ( 1992;). StuA is required for cell pattern formation in Aspergillus . Genes Dev 6: 1770–1782 [CrossRef] [PubMed].
    [Google Scholar]
  58. Monfil V.O. , Casas-Flores S. . ( 2014;). Molecular mechanisms of biocontrol in Trichoderma and their applications in agriculture. . In Biotechnology and Biology of Trichoderma, pp. 429–453. Edited by Gupta V. K. , Schmoll M. , Herrera-Estrella A. , Upadhyay R. S. , Druzhinina I. , Tuohy M. G. . Amsterdam: Elsevier; [CrossRef].
    [Google Scholar]
  59. Montero-Barrientos M. , Hermosa R. , Cardoza R.E. , Gutiérrez S. , Monte E. . ( 2011;). Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum . Appl Environ Microbiol 77: 3009–3016 [CrossRef] [PubMed].
    [Google Scholar]
  60. Morillon A. , Springer M. , Lesage P. . ( 2000;). Activation of the Kss1 invasive-filamentous growth pathway induces Ty1 transcription and retrotransposition in Saccharomyces cerevisiae . Mol Cell Biol 20: 5766–5776 [CrossRef] [PubMed].
    [Google Scholar]
  61. Mukherjee P.K. , Kenerley C.M. . ( 2010;). Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol 76: 2345–2352 [CrossRef] [PubMed].
    [Google Scholar]
  62. Mukherjee P.K. , Latha J. , Hadar R. , Horwitz B.A. . ( 2003;). TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryot Cell 2: 446–455 [CrossRef] [PubMed].
    [Google Scholar]
  63. Mukherjee P.K. , Horwitz B.A. , Herrera-Estrella A. , Schmoll M. , Kenerley C.M. . ( 2013;). Trichoderma research in the genome era. Annu Rev Phytopathol 51: 105–129 [CrossRef] [PubMed].
    [Google Scholar]
  64. Müller P. , Aichinger C. , Feldbrügge M. , Kahmann R. . ( 1999;). The MAP kinase kpp2 regulates mating and pathogenic development in Ustilago maydis . Mol Microbiol 34: 1007–1017 [CrossRef] [PubMed].
    [Google Scholar]
  65. Müller P. , Weinzierl G. , Brachmann A. , Feldbrügge M. , Kahmann R. . ( 2003;). Mating and pathogenic development of the Smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot Cell 2: 1187–1199 [CrossRef] [PubMed].
    [Google Scholar]
  66. Nicolás C. , Hermosa R. , Rubio B. , Mukherjee P.K. , Monte E. . ( 2014;). Trichoderma genes in plants for stress tolerance - status and prospects. Plant Sci 228: 71–78 [CrossRef] [PubMed].
    [Google Scholar]
  67. Nishikawa M. , Hosokawa K. , Ishiguro M. , Minamioka H. , Tamura K. , Hara-Nishimura I. , Takahashi Y. , Shimazaki K. , Imai H. . ( 2008;). Degradation of sphingoid long-chain base 1-phosphates (LCB-1Ps): functional characterization and expression of AtDPL1 encoding LCB-1P lyase involved in the dehydration stress response in Arabidopsis . Plant Cell Physiol 49: 1758–1763 [CrossRef] [PubMed].
    [Google Scholar]
  68. Novinscak A. , Filion M. . ( 2011;). Effect of soil clay content on RNA isolation and on detection and quantification of bacterial gene transcripts in soil by quantitative reverse transcription-PCR. Appl Environ Microbiol 77: 6249–6252 [CrossRef] [PubMed].
    [Google Scholar]
  69. Ohara T. , Tsuge T. . ( 2004;). FoSTUA, encoding a basic helix-loop-helix protein, differentially regulates development of three kinds of asexual spores, macroconidia, microconidia, and chlamydospores, in the fungal plant pathogen Fusarium oxysporum . Eukaryot Cell 3: 1412–1422 [CrossRef] [PubMed].
    [Google Scholar]
  70. Orr K.A. , Knudsen G.R. . ( 2004;). Use of green fluorescent protein and image analysis to quantify proliferation of Trichoderma harzianum in nonsterile soil. Phytopathology 94: 1383–1389 [CrossRef] [PubMed].
    [Google Scholar]
  71. Osherov N. , May G.S. . ( 2001;). The molecular mechanisms of conidial germination. FEMS Microbiol Lett 199: 153–160 [CrossRef] [PubMed].
    [Google Scholar]
  72. Paluh J.L. , Orbach M.J. , Legerton T.L. , Yanofsky C. . ( 1988;). The cross-pathway control gene of Neurospora crassa, cpc-1, encodes a protein similar to GCN4 of yeast and the DNA-binding domain of the oncogene v-jun-encoded protein. Proc Natl Acad Sci U S A 85: 3728–3732 [CrossRef] [PubMed].
    [Google Scholar]
  73. Park H.S. , Ni M. , Jeong K.C. , Kim Y.H. , Yu J.H. . ( 2012;). The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans . PLoS One 7: e45935 [CrossRef] [PubMed].
    [Google Scholar]
  74. Pitzschke A. . ( 2015;). Modes of MAPK substrate recognition and control. Trends Plant Sci 20: 49–55 [CrossRef] [PubMed].
    [Google Scholar]
  75. Puyesky M. , Benhamou N. , Noyola P.P. , Bauw G. , Ziv T. , Van Montagu M. , Herrera-Estrella A. , Horwitz B.A. . ( 1999;). Developmental regulation of cmp1, a gene encoding a multidomain conidiospore surface protein of Trichoderma . Fungal Genet Biol 27: 88–99 [CrossRef] [PubMed].
    [Google Scholar]
  76. Rachfall N. , Schmitt K. , Bandau S. , Smolinski N. , Ehrenreich A. , Valerius O. , Braus G.H. . ( 2013;). RACK1/Asc1p, a ribosomal node in cellular signaling. Mol Cell Proteomics 12: 87–105 [CrossRef] [PubMed].
    [Google Scholar]
  77. Rajesh T. , Rajendhran J. , Pushpam P.L. , Gunasekaran P. . ( 2011;). Methods in metagenomic DNA, RNA, and protein isolation from soil. . In Handbook of Molecular Microbial Ecology II, pp. 93–107. Edited by de Bruijn F. J. . Hoboken, NJ: Wiley;.[CrossRef]
    [Google Scholar]
  78. Reithner B. , Schuhmacher R. , Stoppacher N. , Pucher M. , Brunner K. , Zeilinger S. . ( 2007;). Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk 1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44: 1123–1133 [CrossRef] [PubMed].
    [Google Scholar]
  79. Roberts A.N. , Yanofsky C. . ( 1989;). Genes expressed during conidiation in Neurospora crassa: characterization of con-8. Nucleic Acids Res 17: 197–214 [CrossRef] [PubMed].
    [Google Scholar]
  80. Rozen S. , Skaletsky H. . ( 2000;). Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365–386 [PubMed].
    [Google Scholar]
  81. Saba J.D. , Hla T. . ( 2004;). Point-counterpoint of sphingosine 1-phosphate metabolism. Circ Res 94: 724–734 [CrossRef] [PubMed].
    [Google Scholar]
  82. Sarikaya Bayram O. , Bayram O. , Valerius O. , Park H.S. , Irniger S. , Gerke J. , Ni M. , Han K.H. , Yu J.H. , Braus G.H. . ( 2010;). LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet 6: e1001226 [CrossRef] [PubMed].
    [Google Scholar]
  83. Schuldt A. . ( 2011;). Gene expression: personalized ribosomes. Nat Rev Mol Cell Biol 12: 344–345 [CrossRef] [PubMed].
    [Google Scholar]
  84. Schumacher J. , Gautier A. , Morgant G. , Studt L. , Ducrot P.H. , Le Pêcheur P. , Azeddine S. , Fillinger S. , Leroux P. , other authors . ( 2013;). A functional bikaverin biosynthesis gene cluster in rare strains of Botrytis cinerea is positively controlled by VELVET. PLoS One 8: e53729 [CrossRef] [PubMed].
    [Google Scholar]
  85. Schumacher J. , Simon A. , Cohrs K.C. , Traeger S. , Porquier A. , Dalmais B. , Viaud M. , Tudzynski B. . ( 2015;). The VELVET complex in the gray mold fungus Botrytis cinerea: impact of BcLAE1 on differentiation, secondary metabolism and virulence. Mol Plant Microbe Interact 28: 659–674 [CrossRef] [PubMed].
    [Google Scholar]
  86. Selenska S. , Klingmüller W. . ( 1992;). Direct recovery and molecular analysis of DNA and RNA from soil. Microb Releases 1: 41–46 [PubMed].
    [Google Scholar]
  87. Seong K.-Y. , Zhao X. , Xu J.-R. , Güldener U. , Kistler H.C. . ( 2008;). Conidial germination in the filamentous fungus Fusarium graminearum . Fungal Genet Biol 45: 389–399 [CrossRef] [PubMed].
    [Google Scholar]
  88. Sessitsch A. , Gyamfi S. , Stralis-Pavese N. , Weilharter A. , Pfeifer U. . ( 2002;). RNA isolation from soil for bacterial community and functional analysis: evaluation of different extraction and soil conservation protocols. J Microbiol Methods 51: 171–179 [CrossRef] [PubMed].
    [Google Scholar]
  89. Sharma S. , Aneja M.K. , Mayer J. , Schloter M. , Munch J.C. . ( 2004;). RNA fingerprinting of microbial community in the rhizosphere soil of grain legumes. FEMS Microbiol Lett 240: 181–186 [CrossRef] [PubMed].
    [Google Scholar]
  90. Sheppard D.C. , Doedt T. , Chiang L.Y. , Kim H.S. , Chen D. , Nierman W.C. , Filler S.G. . ( 2005;). The Aspergillus fumigatus StuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competence. Mol Biol Cell 16: 5866–5879 [CrossRef] [PubMed].
    [Google Scholar]
  91. Sigl C. , Haas H. , Specht T. , Pfaller K. , Kürnsteiner H. , Zadra I. . ( 2011;). Among developmental regulators StuA but not BrlA is essential for penicillin V production in Penicillium chrysogenum . Appl Environ Microbiol 77: 972–982 [CrossRef] [PubMed].
    [Google Scholar]
  92. Šimkovič M. , Olejníková P. , Matata M. , Zˇemla P. , Vilimová V. , Farkašová L. , Varečka L. . ( 2015;). Nutrient transport into germinating Trichoderma atroviride conidia and development of its driving force. Microbiology 161: 1240–1250.[CrossRef]
    [Google Scholar]
  93. Son H. , Lee J. , Lee Y.W. . ( 2012;). Mannitol induces the conversion of conidia to chlamydospore-like structures that confer enhanced tolerance to heat, drought, and UV in Gibberella zeae . Microbiol Res 167: 608–615 [CrossRef] [PubMed].
    [Google Scholar]
  94. Springer M.L. , Yanofsky C. . ( 1992;). Expression of con genes along the three sporulation pathways of Neurospora crassa . Genes Dev 6: 1052–1057 [CrossRef] [PubMed].
    [Google Scholar]
  95. Stewart A. , Hill R. . ( 2014;). Applications of Trichoderma in plant growth promotion. . In Biotechnology and Biology of Trichoderma, pp. 415–428. Edited by Gupta V. K. , Schmoll M. , Herrera-Estrella A. , Upadhyay R. S. , Druzhinina I. , Tuohy M. G. . Amsterdam: Elsevier; [CrossRef].
    [Google Scholar]
  96. Steyaert J.M. , Weld R.J. , Loguercio L.L. , Stewart A. . ( 2010a;). Rhythmic conidiation in the blue-light fungus Trichoderma pleuroticola . Fungal Biol 114: 219–223 [CrossRef] [PubMed].
    [Google Scholar]
  97. Steyaert J.M. , Weld R.J. , Mendoza-Mendoza A. , Stewart A. . ( 2010b;). Reproduction without sex: conidiation in the filamentous fungus Trichoderma . Microbiology 156: 2887–2900 [CrossRef] [PubMed].
    [Google Scholar]
  98. Steyaert J.M. , Weld R.J. , Stewart A. . ( 2010c;). Ambient pH intrinsically influences Trichoderma conidiation and colony morphology. Fungal Biol 114: 198–208 [CrossRef] [PubMed].
    [Google Scholar]
  99. Steyaert J.M. , Weld R.J. , Stewart A. . ( 2010d;). Isolate-specific conidiation in Trichoderma in response to different nitrogen sources. Fungal Biol 114: 179–188 [CrossRef] [PubMed].
    [Google Scholar]
  100. Steyaert J.M. , Weld R.J. , Mendoza-Mendoza A. , Kryštofová S. , Šimkovič M. , Varečka L. , Stewart A. . ( 2013;). Asexual development in Trichoderma: from conidia to chlamydospores. . In Trichoderma: Biology and Applications, pp. 87–109. Edited by Mukherjee P. K. , Horwitz B. A. , Singh U. S. , Mukherjee M. , Schmoll M. . India: CAB International; [CrossRef].
    [Google Scholar]
  101. Teutschbein J. , Albrecht D. , Pötsch M. , Guthke R. , Aimanianda V. , Clavaud C. , Latgé J.P. , Brakhage A.A. , Kniemeyer O. . ( 2010;). Proteome profiling and functional classification of intracellular proteins from conidia of the human-pathogenic mold Aspergillus fumigatus . J Proteome Res 9: 3427–3442 [CrossRef] [PubMed].
    [Google Scholar]
  102. Tong X. , Zhang X. , Plummer K.M. , Stowell K.M. , Sullivan P.A. , Farley P.C. . ( 2007;). GcSTUA, an APSES transcription factor, is required for generation of appressorial turgor pressure and full pathogenicity of Glomerella cingulata . Mol Plant Microbe Interact 20: 1102–1111 [CrossRef] [PubMed].
    [Google Scholar]
  103. Versaw W.K. . ( 1995;). A phosphate-repressible, high-affinity phosphate permease is encoded by the pho-5+ gene of Neurospora crassa . Gene 153: 135–139 [CrossRef] [PubMed].
    [Google Scholar]
  104. Wagemaker M.J. , Eastwood D.C. , van der Drift C. , Jetten M.S. , Burton K. , Van Griensven L.J. , Op den Camp H.J. . ( 2007;). Argininosuccinate synthetase and argininosuccinate lyase: two ornithine cycle enzymes from Agaricus bisporus . Mycol Res 111: 493–502 [CrossRef] [PubMed].
    [Google Scholar]
  105. Wang Y. , Morimoto S. , Ogawa N. , Oomori T. , Fujii T. . ( 2009;). An improved method to extract RNA from soil with efficient removal of humic acids. J Appl Microbiol 107: 1168–1177 [CrossRef] [PubMed].
    [Google Scholar]
  106. Wang Y. , Hayatsu M. , Fujii T. . ( 2012;). Extraction of bacterial RNA from soil: challenges and solutions. Microbes Environ 27: 111–121 [CrossRef] [PubMed].
    [Google Scholar]
  107. Wilson D.N. , Doudna Cate J.H. . ( 2012;). The structure and function of the eukaryotic ribosome. Cold Spring Harb Perspect Biol 4: a011536 [CrossRef] [PubMed].
    [Google Scholar]
  108. Xu H. , Andi B. , Qian J. , West A.H. , Cook P.F. . ( 2006;). The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys 46: 43–64 [CrossRef] [PubMed].
    [Google Scholar]
  109. Yamamoto N. , Matsuzaka Y. , Kimura M. , Matsuki H. , Yanagisawa Y. . ( 2009;). Comparison of dry- and wet-based fine bead homogenizations to extract DNA from fungal spores. J Biosci Bioeng 107: 464–470 [CrossRef] [PubMed].
    [Google Scholar]
  110. Yamashiro C.T. , Ebbole D.J. , Lee B.U. , Brown R.E. , Bourland C. , Madi L. , Yanofsky C. . ( 1996;). Characterization of rco-1 of Neurospora crassa, a pleiotropic gene affecting growth and development that encodes a homolog of Tup1 of Saccharomyces cerevisiae . Mol Cell Biol 16: 6218–6228 [PubMed].[CrossRef]
    [Google Scholar]
  111. Zhang Y. , Qu Z. , Zheng W. , Liu B. , Wang X. , Xue X. , Xu L. , Huang L. , Han Q. , other authors . ( 2008;). Stage-specific gene expression during urediniospore germination in Puccinia striiformis f. sp tritici . BMC Genomics 9: 203 [CrossRef] [PubMed].
    [Google Scholar]
  112. Zhao P.B. , Ren A.Z. , Li D.C. . ( 2011;). The FUS3/KSS1-type MAP kinase gene FPK1 is involved in hyphal growth, conidiation and plant infection of Fusarium proliferatum . J Mol Microbiol Biotechnol 21: 110–119 [CrossRef] [PubMed].
    [Google Scholar]
  113. Zhou X. , Liao W.J. , Liao J.M. , Liao P. , Lu H. . ( 2015;). Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 7: 92–104 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000167
Loading
/content/journal/micro/10.1099/mic.0.000167
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error