1887

Abstract

is the causative agent of Lyme disease. In , RpoS controls the expression of virulence genes needed for mammalian infection. The Fur homologue BosR regulates the transcription of and therefore BosR determines, albeit indirectly, the infection status of the spirochaete. Transcription of in is complex: can be transcribed either from an RpoD-dependent promoter to yield a long transcript or from an RpoN-dependent promoter to yield a short transcript. This study shows that BosR repressed synthesis of the long transcript while at the same time activating synthesis of the short transcript. How BosR does this is unclear. To address this, spirochaetes were engineered to express either BosR or the naturally occurring variant BosRR39K. Mice became infected by the spirochaetes expressing BosR but not by the spirochaetes expressing BosRR39K. Furthermore, the spirochaetes expressing BosR activated transcription during growth in culture whereas the spirochaetes expressing BosRR39K did not. Thus, BosR's activation of transcription somehow involves Arg39. This arginine is highly conserved in other FUR proteins and therefore other FUR proteins may also require this arginine to function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000166
2015-11-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2243.html?itemId=/content/journal/micro/10.1099/mic.0.000166&mimeType=html&fmt=ahah

References

  1. An Y.J., Ahn B.E., Han A.R., Kim H.M., Chung K.M., Shin J.H., Cho Y.B., Roe J.H., Cha S.S. (2009). Structural basis for the specialization of Nur, a nickel-specific Fur homolog, in metal sensing and DNA recognitionNucleic Acids Res 3734423451 [View Article][PubMed]. [Google Scholar]
  2. Aravind L., Anantharaman V., Balaji S., Babu M.M., Iyer L.M. (2005). The many faces of the helix-turn-helix domain: transcription regulation and beyondFEMS Microbiol Rev 29231262 [View Article][PubMed]. [Google Scholar]
  3. Barbour A.G. (1984). Isolation and cultivation of Lyme disease spirochetesYale J Biol Med 57521525[PubMed]. [Google Scholar]
  4. Benach J.L., Bosler E.M., Hanrahan J.P., Coleman J.L., Habicht G.S., Bast T.F., Cameron D.J., Ziegler J.L., Barbour A.G., other authors. (1983). Spirochetes isolated from the blood of two patients with Lyme diseaseN Engl J Med 308740742 [View Article][PubMed]. [Google Scholar]
  5. Blevins J.S., Xu H., He M., Norgard M.V., Reitzer L., Yang X.F. (2009). Rrp2, a σ54-dependent transcriptional activator of Borrelia burgdorferi, activates rpoS in an enhancer-independent mannerJ Bacteriol 19129022905 [View Article][PubMed]. [Google Scholar]
  6. Boylan J.A., Posey J.E., Gherardini F.C. (2003). Borrelia oxidative stress response regulator, BosR: a distinctive Zn-dependent transcriptional activatorProc Natl Acad Sci U S A 1001168411689 [View Article][PubMed]. [Google Scholar]
  7. Boylan J.A., Hummel C.S., Benoit S., Garcia-Lara J., Treglown-Downey J., Crane E.J. III, Gherardini F.C. (2006). Borrelia burgdorferi bb0728 encodes a coenzyme A disulphide reductase whose function suggests a role in intracellular redox and the oxidative stress responseMol Microbiol 59475486 [View Article][PubMed]. [Google Scholar]
  8. Burgdorfer W., Barbour A.G., Hayes S.F., Benach J.L., Grunwaldt E., Davis J.P. (1982). Lyme disease-a tick-borne spirochetosis?Science 21613171319 [View Article][PubMed]. [Google Scholar]
  9. Burtnick M.N., Downey J.S., Brett P.J., Boylan J.A., Frye J.G., Hoover T.R., Gherardini F.C. (2007). Insights into the complex regulation of rpoS in Borrelia burgdorferiMol Microbiol 65277293 [View Article][PubMed]. [Google Scholar]
  10. Butcher J., Sarvan S., Brunzelle J.S., Couture J.F., Stintzi A. (2012). Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulationProc Natl Acad Sci U S A 1091004710052 [View Article][PubMed]. [Google Scholar]
  11. Coleman J.L., Benach J.L. (1989). Identification and characterization of an endoflagellar antigen of Borrelia burgdorferiJ Clin Invest 84322330 [View Article][PubMed]. [Google Scholar]
  12. Dian C., Vitale S., Leonard G.A., Bahlawane C., Fauquant C., Leduc D., Muller C., de Reuse H., Michaud-Soret I., Terradot L. (2011). The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sitesMol Microbiol 7912601275 [View Article][PubMed]. [Google Scholar]
  13. Eggers C.H., Caimano M.J., Clawson M.L., Miller W.G., Samuels D.S., Radolf J.D. (2002). Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for the expression of fluorescent reporters in the lyme disease spirochaeteMol Microbiol 43281295 [View Article][PubMed]. [Google Scholar]
  14. Elias A.F., Stewart P.E., Grimm D., Caimano M.J., Eggers C.H., Tilly K., Bono J.L., Akins D.R., Radolf J.D., other authors. (2002). Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain backgroundInfect Immun 7021392150 [View Article][PubMed]. [Google Scholar]
  15. Finn R.D., Bateman A., Clements J., Coggill P., Eberhardt R.Y., Eddy S.R., Heger A., Hetherington K., Holm L., other authors. (2014). Pfam: the protein families databaseNucleic Acids Res 42(D1), D222D230 [View Article][PubMed]. [Google Scholar]
  16. Fraser C.M., Casjens S., Huang W.M., Sutton G.G., Clayton R., Lathigra R., White O., Ketchum K.A., Dodson R., other authors. (1997). Genomic sequence of a Lyme disease spirochaeteBorrelia burgdorferi. Nature 390580586 [View Article][PubMed]. [Google Scholar]
  17. Gilston B.A., Wang S., Marcus M.D., Canalizo-Hernández M.A., Swindell E.P., Xue Y., Mondragón A., O'Halloran T.V. (2014). Structural and mechanistic basis of zinc regulation across the E. coli Zur regulonPLoS Biol 12e1001987 [View Article][PubMed]. [Google Scholar]
  18. Grimm D., Tilly K., Byram R., Stewart P.E., Krum J.G., Bueschel D.M., Schwan T.G., Policastro P.F., Elias A.F., Rosa P.A. (2004). Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammalsProc Natl Acad Sci U S A 10131423147 [View Article][PubMed]. [Google Scholar]
  19. Hübner A., Yang X., Nolen D.M., Popova T.G., Cabello F.C., Norgard M.V. (2001). Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathwayProc Natl Acad Sci U S A 981272412729 [View Article][PubMed]. [Google Scholar]
  20. Huffman J.L., Brennan R.G. (2002). Prokaryotic transcription regulators: more than just the helix-turn-helix motifCurr Opin Struct Biol 1298106 [View Article][PubMed]. [Google Scholar]
  21. Hyde J.A., Seshu J., Skare J.T. (2006). Transcriptional profiling of Borrelia burgdorferi containing a unique bosR allele identifies a putative oxidative stress regulonMicrobiology 15225992609 [View Article][PubMed]. [Google Scholar]
  22. Hyde J.A., Shaw D.K., Smith R. III, Trzeciakowski J.P., Skare J.T. (2009). The BosR regulatory protein of Borrelia burgdorferi interfaces with the RpoS regulatory pathway and modulates both the oxidative stress response and pathogenic properties of the Lyme disease spirocheteMol Microbiol 7413441355 [View Article][PubMed]. [Google Scholar]
  23. Hyde J.A., Shaw D.K., Smith R. III, Trzeciakowski J.P., Skare J.T. (2010). Characterization of a conditional bosR mutant in Borrelia burgdorferiInfect Immun 78265274 [View Article][PubMed]. [Google Scholar]
  24. Jacquamet L., Traoré D.A., Ferrer J.L., Proux O., Testemale D., Hazemann J.L., Nazarenko E., El Ghazouani A., Caux-Thang C., other authors. (2009). Structural characterization of the active form of PerR: insights into the metal-induced activation of PerR and Fur proteins for DNA bindingMol Microbiol 732031 [View Article][PubMed]. [Google Scholar]
  25. Katona L.I., Tokarz R., Kuhlow C.J., Benach J., Benach J.L. (2004). The fur homologue in Borrelia burgdorferiJ Bacteriol 18664436456 [View Article][PubMed]. [Google Scholar]
  26. King R.A., Sen R., Weisberg R.A. (2003). Using a lac repressor roadblock to analyze the E. coli transcription elongation complexMethods Enzymol 371207218 [View Article][PubMed]. [Google Scholar]
  27. Li X., Pal U., Ramamoorthi N., Liu X., Desrosiers D.C., Eggers C.H., Anderson J.F., Radolf J.D., Fikrig E. (2007). The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticksMol Microbiol 63694710 [View Article][PubMed]. [Google Scholar]
  28. Lin C.S., Chao S.Y., Hammel M., Nix J.C., Tseng H.L., Tsou C.C., Fei C.H., Chiou H.S., Jeng U.S., other authors. (2014). Distinct structural features of the peroxide response regulator from group A Streptococcus drive DNA bindingPLoS One 9e89027 [View Article][PubMed]. [Google Scholar]
  29. Lucarelli D., Russo S., Garman E., Milano A., Meyer-Klaucke W., Pohl E. (2007). Crystal structure and function of the zinc uptake regulator FurB from Mycobacterium tuberculosisJ Biol Chem 28299149922 [View Article][PubMed]. [Google Scholar]
  30. Lybecker M.C., Samuels D.S. (2007). Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferiMol Microbiol 6410751089 [View Article][PubMed]. [Google Scholar]
  31. Lybecker M.C., Abel C.A., Feig A.L., Samuels D.S. (2010). Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferiMol Microbiol 78622635 [View Article][PubMed]. [Google Scholar]
  32. Makthal N., Rastegari S., Sanson M., Ma Z., Olsen R.J., Helmann J.D., Musser J.M., Kumaraswami M. (2013). Crystal structure of peroxide stress regulator from Streptococcus pyogenes provides functional insights into the mechanism of oxidative stress sensingJ Biol Chem 2881831118324 [View Article][PubMed]. [Google Scholar]
  33. Ouyang Z., Kumar M., Kariu T., Haq S., Goldberg M., Pal U., Norgard M.V. (2009). BosR (BB0647) governs virulence expression in Borrelia burgdorferiMol Microbiol 7413311343 [View Article][PubMed]. [Google Scholar]
  34. Ouyang Z., Deka R.K., Norgard M.V. (2011). BosR (BB0647) controls the RpoN-RpoS regulatory pathway and virulence expression in Borrelia burgdorferi by a novel DNA-binding mechanismPLoS Pathog 7e1001272 [View Article][PubMed]. [Google Scholar]
  35. Ouyang Z., Zhou J., Brautigam C.A., Deka R., Norgard M.V. (2014). Identification of a core sequence for the binding of BosR to the rpoS promoter region in Borrelia burgdorferiMicrobiology 160851862 [View Article][PubMed]. [Google Scholar]
  36. Ouyang Z., Zhou J., Brautigam C.A., Deka R.K., Norgard M.V. (2015). Identification of a core sequence for the binding of BosR to the rpoS promoter region in Borrelia burgdorferiMicrobiology 161931 [View Article][PubMed]. [Google Scholar]
  37. Pal U., Yang X., Chen M., Bockenstedt L.K., Anderson J.F., Flavell R.A., Norgard M.V., Fikrig E. (2004). OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glandsJ Clin Invest 113220230 [View Article][PubMed]. [Google Scholar]
  38. Palmer A.C., Ahlgren-Berg A., Egan J.B., Dodd I.B., Shearwin K.E. (2009). Potent transcriptional interference by pausing of RNA polymerases over a downstream promoterMol Cell 34545555 [View Article][PubMed]. [Google Scholar]
  39. Palmer A.C., Egan J.B., Shearwin K.E. (2011). Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factorsTranscription 2914 [View Article][PubMed]. [Google Scholar]
  40. Pecqueur L., D'Autréaux B., Dupuy J., Nicolet Y., Jacquamet L., Brutscher B., Michaud-Soret I., Bersch B. (2006). Structural changes of Escherichia coli ferric uptake regulator during metal-dependent dimerization and activation explored by NMR and X-ray crystallographyJ Biol Chem 2812128621295 [View Article][PubMed]. [Google Scholar]
  41. Pohl E., Haller J.C., Mijovilovich A., Meyer-Klaucke W., Garman E., Vasil M.L. (2003). Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulatorMol Microbiol 47903915 [View Article][PubMed]. [Google Scholar]
  42. Radolf J.D., Caimano M.J., Stevenson B., Hu L.T. (2012). Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetesNat Rev Microbiol 108799[PubMed]. [Google Scholar]
  43. Rohs R., West S.M., Sosinsky A., Liu P., Mann R.S., Honig B. (2009). The role of DNA shape in protein-DNA recognitionNature 46112481253 [View Article][PubMed]. [Google Scholar]
  44. Samuels D.S. (2011). Gene regulation in Borrelia burgdorferiAnnu Rev Microbiol 65479499 [View Article][PubMed]. [Google Scholar]
  45. Samuels D.S., Radolf J.D. (2009). Who is the BosR around here anyway?Mol Microbiol 7412951299 [View Article][PubMed]. [Google Scholar]
  46. Seshu J., Boylan J.A., Hyde J.A., Swingle K.L., Gherardini F.C., Skare J.T. (2004). A conservative amino acid change alters the function of BosR, the redox regulator of Borrelia burgdorferiMol Microbiol 5413521363 [View Article][PubMed]. [Google Scholar]
  47. Shaw D.K., Hyde J.A., Skare J.T. (2012). The BB0646 protein demonstrates lipase and haemolytic activity associated with Borrelia burgdorferi, the aetiological agent of Lyme diseaseMol Microbiol 83319334 [View Article][PubMed]. [Google Scholar]
  48. Shearwin K.E., Callen B.P., Egan J.B. (2005). Transcriptional interference—a crash courseTrends Genet 21339345 [View Article][PubMed]. [Google Scholar]
  49. Sheikh M.A., Taylor G.L. (2009). Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordinationMol Microbiol 7212081220 [View Article][PubMed]. [Google Scholar]
  50. Shi Y., Dadhwal P., Li X., Liang F.T. (2014). BosR functions as a repressor of the ospAB operon in Borrelia burgdorferiPLoS One 9e109307 [View Article][PubMed]. [Google Scholar]
  51. Shin J.H., Jung H.J., An Y.J., Cho Y.B., Cha S.S., Roe J.H. (2011). Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in ZurProc Natl Acad Sci U S A 10850455050 [View Article][PubMed]. [Google Scholar]
  52. Smith A.H., Blevins J.S., Bachlani G.N., Yang X.F., Norgard M.V. (2007). Evidence that RpoS (σS) in Borrelia burgdorferi is controlled directly by RpoN (σ54N)J Bacteriol 18921392144 [View Article][PubMed]. [Google Scholar]
  53. Steere A.C., Grodzicki R.L., Kornblatt A.N., Craft J.E., Barbour A.G., Burgdorfer W., Schmid G.P., Johnson E., Malawista S.E. (1983). The spirochetal etiology of Lyme diseaseN Engl J Med 308733740 [View Article][PubMed]. [Google Scholar]
  54. Studholme D.J., Buck M. (2000). Novel roles of σN in small genomesMicrobiology 14645 [View Article][PubMed]. [Google Scholar]
  55. Tilly K., Krum J.G., Bestor A., Jewett M.W., Grimm D., Bueschel D., Byram R., Dorward D., Vanraden M.J., other authors. (2006). Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infectionInfect Immun 7435543564 [View Article][PubMed]. [Google Scholar]
  56. Traoré D.A., El Ghazouani A., Ilango S., Dupuy J., Jacquamet L., Ferrer J.L., Caux-Thang C., Duarte V., Latour J.M. (2006). Crystal structure of the apo-PerR-Zn protein from Bacillus subtilisMol Microbiol 6112111219 [View Article][PubMed]. [Google Scholar]
  57. Traoré D.A.K., El Ghazouani A., Jacquamet L., Borel F., Ferrer J.-L., Lascoux D., Ravanat J.-L., Jaquinod M., Blondin G., other authors. (2009). Structural and functional characterization of 2-oxo-histidine in oxidized PerR proteinNat Chem Biol 55359 [View Article][PubMed]. [Google Scholar]
  58. Wang P., Dadhwal P., Cheng Z., Zianni M.R., Rikihisa Y., Liang F.T., Li X. (2013). Borrelia burgdorferi oxidative stress regulator BosR directly represses lipoproteins primarily expressed in the tick during mammalian infectionMol Microbiol 8911401153 [View Article][PubMed]. [Google Scholar]
  59. Xu H., Caimano M.J., Lin T., He M., Radolf J.D., Norris S.J., Gherardini F., Wolfe A.J., Yang X.F. (2010). Role of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS pathway in Borrelia burgdorferiPLoS Pathog 6e1001104 [View Article][PubMed]. [Google Scholar]
  60. Yang X., Goldberg M.S., Popova T.G., Schoeler G.B., Wikel S.K., Hagman K.E., Norgard M.V. (2000). Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferiMol Microbiol 3714701479 [View Article][PubMed]. [Google Scholar]
  61. Yang X.F., Alani S.M., Norgard M.V. (2003). The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferiProc Natl Acad Sci U S A 1001100111006 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000166
Loading
/content/journal/micro/10.1099/mic.0.000166
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error