1887

Abstract

is the causative agent of Lyme disease. In , RpoS controls the expression of virulence genes needed for mammalian infection. The Fur homologue BosR regulates the transcription of and therefore BosR determines, albeit indirectly, the infection status of the spirochaete. Transcription of in is complex: can be transcribed either from an RpoD-dependent promoter to yield a long transcript or from an RpoN-dependent promoter to yield a short transcript. This study shows that BosR repressed synthesis of the long transcript while at the same time activating synthesis of the short transcript. How BosR does this is unclear. To address this, spirochaetes were engineered to express either BosR or the naturally occurring variant BosRR39K. Mice became infected by the spirochaetes expressing BosR but not by the spirochaetes expressing BosRR39K. Furthermore, the spirochaetes expressing BosR activated transcription during growth in culture whereas the spirochaetes expressing BosRR39K did not. Thus, BosR's activation of transcription somehow involves Arg39. This arginine is highly conserved in other FUR proteins and therefore other FUR proteins may also require this arginine to function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000166
2015-11-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2243.html?itemId=/content/journal/micro/10.1099/mic.0.000166&mimeType=html&fmt=ahah

References

  1. An Y.J., Ahn B.E., Han A.R., Kim H.M., Chung K.M., Shin J.H., Cho Y.B., Roe J.H., Cha S.S.. ( 2009;). Structural basis for the specialization of Nur, a nickel-specific Fur homolog, in metal sensing and DNA recognition. Nucleic Acids Res 37: 3442–3451 [CrossRef] [PubMed].
    [Google Scholar]
  2. Aravind L., Anantharaman V., Balaji S., Babu M.M., Iyer L.M.. ( 2005;). The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 29: 231–262 [CrossRef] [PubMed].
    [Google Scholar]
  3. Barbour A.G.. ( 1984;). Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57: 521–525 [PubMed].
    [Google Scholar]
  4. Benach J.L., Bosler E.M., Hanrahan J.P., Coleman J.L., Habicht G.S., Bast T.F., Cameron D.J., Ziegler J.L., Barbour A.G., other authors. ( 1983;). Spirochetes isolated from the blood of two patients with Lyme disease. N Engl J Med 308: 740–742 [CrossRef] [PubMed].
    [Google Scholar]
  5. Blevins J.S., Xu H., He M., Norgard M.V., Reitzer L., Yang X.F.. ( 2009;). Rrp2, a σ54-dependent transcriptional activator of Borrelia burgdorferi, activates rpoS in an enhancer-independent manner. J Bacteriol 191: 2902–2905 [CrossRef] [PubMed].
    [Google Scholar]
  6. Boylan J.A., Posey J.E., Gherardini F.C.. ( 2003;). Borrelia oxidative stress response regulator, BosR: a distinctive Zn-dependent transcriptional activator. Proc Natl Acad Sci U S A 100: 11684–11689 [CrossRef] [PubMed].
    [Google Scholar]
  7. Boylan J.A., Hummel C.S., Benoit S., Garcia-Lara J., Treglown-Downey J., Crane E.J. III, Gherardini F.C.. ( 2006;). Borrelia burgdorferi bb0728 encodes a coenzyme A disulphide reductase whose function suggests a role in intracellular redox and the oxidative stress response. Mol Microbiol 59: 475–486 [CrossRef] [PubMed].
    [Google Scholar]
  8. Burgdorfer W., Barbour A.G., Hayes S.F., Benach J.L., Grunwaldt E., Davis J.P.. ( 1982;). Lyme disease-a tick-borne spirochetosis?. Science 216: 1317–1319 [CrossRef] [PubMed].
    [Google Scholar]
  9. Burtnick M.N., Downey J.S., Brett P.J., Boylan J.A., Frye J.G., Hoover T.R., Gherardini F.C.. ( 2007;). Insights into the complex regulation of rpoS in Borrelia burgdorferi. Mol Microbiol 65: 277–293 [CrossRef] [PubMed].
    [Google Scholar]
  10. Butcher J., Sarvan S., Brunzelle J.S., Couture J.F., Stintzi A.. ( 2012;). Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulation. Proc Natl Acad Sci U S A 109: 10047–10052 [CrossRef] [PubMed].
    [Google Scholar]
  11. Coleman J.L., Benach J.L.. ( 1989;). Identification and characterization of an endoflagellar antigen of Borrelia burgdorferi. J Clin Invest 84: 322–330 [CrossRef] [PubMed].
    [Google Scholar]
  12. Dian C., Vitale S., Leonard G.A., Bahlawane C., Fauquant C., Leduc D., Muller C., de Reuse H., Michaud-Soret I., Terradot L.. ( 2011;). The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites. Mol Microbiol 79: 1260–1275 [CrossRef] [PubMed].
    [Google Scholar]
  13. Eggers C.H., Caimano M.J., Clawson M.L., Miller W.G., Samuels D.S., Radolf J.D.. ( 2002;). Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for the expression of fluorescent reporters in the lyme disease spirochaete. Mol Microbiol 43: 281–295 [CrossRef] [PubMed].
    [Google Scholar]
  14. Elias A.F., Stewart P.E., Grimm D., Caimano M.J., Eggers C.H., Tilly K., Bono J.L., Akins D.R., Radolf J.D., other authors. ( 2002;). Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun 70: 2139–2150 [CrossRef] [PubMed].
    [Google Scholar]
  15. Finn R.D., Bateman A., Clements J., Coggill P., Eberhardt R.Y., Eddy S.R., Heger A., Hetherington K., Holm L., other authors. ( 2014;). Pfam: the protein families database. Nucleic Acids Res 42: (D1), D222–D230 [CrossRef] [PubMed].
    [Google Scholar]
  16. Fraser C.M., Casjens S., Huang W.M., Sutton G.G., Clayton R., Lathigra R., White O., Ketchum K.A., Dodson R., other authors. ( 1997;). Genomic sequence of a Lyme disease spirochaete. Borrelia burgdorferi. Nature 390: 580–586 [CrossRef] [PubMed].
    [Google Scholar]
  17. Gilston B.A., Wang S., Marcus M.D., Canalizo-Hernández M.A., Swindell E.P., Xue Y., Mondragón A., O'Halloran T.V.. ( 2014;). Structural and mechanistic basis of zinc regulation across the E. coli Zur regulon. PLoS Biol 12: e1001987 [CrossRef] [PubMed].
    [Google Scholar]
  18. Grimm D., Tilly K., Byram R., Stewart P.E., Krum J.G., Bueschel D.M., Schwan T.G., Policastro P.F., Elias A.F., Rosa P.A.. ( 2004;). Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci U S A 101: 3142–3147 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hübner A., Yang X., Nolen D.M., Popova T.G., Cabello F.C., Norgard M.V.. ( 2001;). Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 98: 12724–12729 [CrossRef] [PubMed].
    [Google Scholar]
  20. Huffman J.L., Brennan R.G.. ( 2002;). Prokaryotic transcription regulators: more than just the helix-turn-helix motif. Curr Opin Struct Biol 12: 98–106 [CrossRef] [PubMed].
    [Google Scholar]
  21. Hyde J.A., Seshu J., Skare J.T.. ( 2006;). Transcriptional profiling of Borrelia burgdorferi containing a unique bosR allele identifies a putative oxidative stress regulon. Microbiology 152: 2599–2609 [CrossRef] [PubMed].
    [Google Scholar]
  22. Hyde J.A., Shaw D.K., Smith R. III, Trzeciakowski J.P., Skare J.T.. ( 2009;). The BosR regulatory protein of Borrelia burgdorferi interfaces with the RpoS regulatory pathway and modulates both the oxidative stress response and pathogenic properties of the Lyme disease spirochete. Mol Microbiol 74: 1344–1355 [CrossRef] [PubMed].
    [Google Scholar]
  23. Hyde J.A., Shaw D.K., Smith R. III, Trzeciakowski J.P., Skare J.T.. ( 2010;). Characterization of a conditional bosR mutant in Borrelia burgdorferi. Infect Immun 78: 265–274 [CrossRef] [PubMed].
    [Google Scholar]
  24. Jacquamet L., Traoré D.A., Ferrer J.L., Proux O., Testemale D., Hazemann J.L., Nazarenko E., El Ghazouani A., Caux-Thang C., other authors. ( 2009;). Structural characterization of the active form of PerR: insights into the metal-induced activation of PerR and Fur proteins for DNA binding. Mol Microbiol 73: 20–31 [CrossRef] [PubMed].
    [Google Scholar]
  25. Katona L.I., Tokarz R., Kuhlow C.J., Benach J., Benach J.L.. ( 2004;). The fur homologue in Borrelia burgdorferi. J Bacteriol 186: 6443–6456 [CrossRef] [PubMed].
    [Google Scholar]
  26. King R.A., Sen R., Weisberg R.A.. ( 2003;). Using a lac repressor roadblock to analyze the E. coli transcription elongation complex. Methods Enzymol 371: 207–218 [CrossRef] [PubMed].
    [Google Scholar]
  27. Li X., Pal U., Ramamoorthi N., Liu X., Desrosiers D.C., Eggers C.H., Anderson J.F., Radolf J.D., Fikrig E.. ( 2007;). The Lyme disease agent Borrelia burgdorferi requires BB0690, a Dps homologue, to persist within ticks. Mol Microbiol 63: 694–710 [CrossRef] [PubMed].
    [Google Scholar]
  28. Lin C.S., Chao S.Y., Hammel M., Nix J.C., Tseng H.L., Tsou C.C., Fei C.H., Chiou H.S., Jeng U.S., other authors. ( 2014;). Distinct structural features of the peroxide response regulator from group A Streptococcus drive DNA binding. PLoS One 9: e89027 [CrossRef] [PubMed].
    [Google Scholar]
  29. Lucarelli D., Russo S., Garman E., Milano A., Meyer-Klaucke W., Pohl E.. ( 2007;). Crystal structure and function of the zinc uptake regulator FurB from Mycobacterium tuberculosis. J Biol Chem 282: 9914–9922 [CrossRef] [PubMed].
    [Google Scholar]
  30. Lybecker M.C., Samuels D.S.. ( 2007;). Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi. Mol Microbiol 64: 1075–1089 [CrossRef] [PubMed].
    [Google Scholar]
  31. Lybecker M.C., Abel C.A., Feig A.L., Samuels D.S.. ( 2010;). Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 78: 622–635 [CrossRef] [PubMed].
    [Google Scholar]
  32. Makthal N., Rastegari S., Sanson M., Ma Z., Olsen R.J., Helmann J.D., Musser J.M., Kumaraswami M.. ( 2013;). Crystal structure of peroxide stress regulator from Streptococcus pyogenes provides functional insights into the mechanism of oxidative stress sensing. J Biol Chem 288: 18311–18324 [CrossRef] [PubMed].
    [Google Scholar]
  33. Ouyang Z., Kumar M., Kariu T., Haq S., Goldberg M., Pal U., Norgard M.V.. ( 2009;). BosR (BB0647) governs virulence expression in Borrelia burgdorferi. Mol Microbiol 74: 1331–1343 [CrossRef] [PubMed].
    [Google Scholar]
  34. Ouyang Z., Deka R.K., Norgard M.V.. ( 2011;). BosR (BB0647) controls the RpoN-RpoS regulatory pathway and virulence expression in Borrelia burgdorferi by a novel DNA-binding mechanism. PLoS Pathog 7: e1001272 [CrossRef] [PubMed].
    [Google Scholar]
  35. Ouyang Z., Zhou J., Brautigam C.A., Deka R., Norgard M.V.. ( 2014;). Identification of a core sequence for the binding of BosR to the rpoS promoter region in Borrelia burgdorferi. Microbiology 160: 851–862 [CrossRef] [PubMed].
    [Google Scholar]
  36. Ouyang Z., Zhou J., Brautigam C.A., Deka R.K., Norgard M.V.. ( 2015;). Identification of a core sequence for the binding of BosR to the rpoS promoter region in Borrelia burgdorferi. Microbiology 161: 931 [CrossRef] [PubMed].
    [Google Scholar]
  37. Pal U., Yang X., Chen M., Bockenstedt L.K., Anderson J.F., Flavell R.A., Norgard M.V., Fikrig E.. ( 2004;). OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113: 220–230 [CrossRef] [PubMed].
    [Google Scholar]
  38. Palmer A.C., Ahlgren-Berg A., Egan J.B., Dodd I.B., Shearwin K.E.. ( 2009;). Potent transcriptional interference by pausing of RNA polymerases over a downstream promoter. Mol Cell 34: 545–555 [CrossRef] [PubMed].
    [Google Scholar]
  39. Palmer A.C., Egan J.B., Shearwin K.E.. ( 2011;). Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors. Transcription 2: 9–14 [CrossRef] [PubMed].
    [Google Scholar]
  40. Pecqueur L., D'Autréaux B., Dupuy J., Nicolet Y., Jacquamet L., Brutscher B., Michaud-Soret I., Bersch B.. ( 2006;). Structural changes of Escherichia coli ferric uptake regulator during metal-dependent dimerization and activation explored by NMR and X-ray crystallography. J Biol Chem 281: 21286–21295 [CrossRef] [PubMed].
    [Google Scholar]
  41. Pohl E., Haller J.C., Mijovilovich A., Meyer-Klaucke W., Garman E., Vasil M.L.. ( 2003;). Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47: 903–915 [CrossRef] [PubMed].
    [Google Scholar]
  42. Radolf J.D., Caimano M.J., Stevenson B., Hu L.T.. ( 2012;). Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10: 87–99 [PubMed].
    [Google Scholar]
  43. Rohs R., West S.M., Sosinsky A., Liu P., Mann R.S., Honig B.. ( 2009;). The role of DNA shape in protein-DNA recognition. Nature 461: 1248–1253 [CrossRef] [PubMed].
    [Google Scholar]
  44. Samuels D.S.. ( 2011;). Gene regulation in Borrelia burgdorferi. Annu Rev Microbiol 65: 479–499 [CrossRef] [PubMed].
    [Google Scholar]
  45. Samuels D.S., Radolf J.D.. ( 2009;). Who is the BosR around here anyway?. Mol Microbiol 74: 1295–1299 [CrossRef] [PubMed].
    [Google Scholar]
  46. Seshu J., Boylan J.A., Hyde J.A., Swingle K.L., Gherardini F.C., Skare J.T.. ( 2004;). A conservative amino acid change alters the function of BosR, the redox regulator of Borrelia burgdorferi. Mol Microbiol 54: 1352–1363 [CrossRef] [PubMed].
    [Google Scholar]
  47. Shaw D.K., Hyde J.A., Skare J.T.. ( 2012;). The BB0646 protein demonstrates lipase and haemolytic activity associated with Borrelia burgdorferi, the aetiological agent of Lyme disease. Mol Microbiol 83: 319–334 [CrossRef] [PubMed].
    [Google Scholar]
  48. Shearwin K.E., Callen B.P., Egan J.B.. ( 2005;). Transcriptional interference—a crash course. Trends Genet 21: 339–345 [CrossRef] [PubMed].
    [Google Scholar]
  49. Sheikh M.A., Taylor G.L.. ( 2009;). Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol Microbiol 72: 1208–1220 [CrossRef] [PubMed].
    [Google Scholar]
  50. Shi Y., Dadhwal P., Li X., Liang F.T.. ( 2014;). BosR functions as a repressor of the ospAB operon in Borrelia burgdorferi. PLoS One 9: e109307 [CrossRef] [PubMed].
    [Google Scholar]
  51. Shin J.H., Jung H.J., An Y.J., Cho Y.B., Cha S.S., Roe J.H.. ( 2011;). Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur. Proc Natl Acad Sci U S A 108: 5045–5050 [CrossRef] [PubMed].
    [Google Scholar]
  52. Smith A.H., Blevins J.S., Bachlani G.N., Yang X.F., Norgard M.V.. ( 2007;). Evidence that RpoS (σS) in Borrelia burgdorferi is controlled directly by RpoN (σ54N). J Bacteriol 189: 2139–2144 [CrossRef] [PubMed].
    [Google Scholar]
  53. Steere A.C., Grodzicki R.L., Kornblatt A.N., Craft J.E., Barbour A.G., Burgdorfer W., Schmid G.P., Johnson E., Malawista S.E.. ( 1983;). The spirochetal etiology of Lyme disease. N Engl J Med 308: 733–740 [CrossRef] [PubMed].
    [Google Scholar]
  54. Studholme D.J., Buck M.. ( 2000;). Novel roles of σN in small genomes. Microbiology 146: 4–5 [CrossRef] [PubMed].
    [Google Scholar]
  55. Tilly K., Krum J.G., Bestor A., Jewett M.W., Grimm D., Bueschel D., Byram R., Dorward D., Vanraden M.J., other authors. ( 2006;). Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect Immun 74: 3554–3564 [CrossRef] [PubMed].
    [Google Scholar]
  56. Traoré D.A., El Ghazouani A., Ilango S., Dupuy J., Jacquamet L., Ferrer J.L., Caux-Thang C., Duarte V., Latour J.M.. ( 2006;). Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis. Mol Microbiol 61: 1211–1219 [CrossRef] [PubMed].
    [Google Scholar]
  57. Traoré D.A.K., El Ghazouani A., Jacquamet L., Borel F., Ferrer J.-L., Lascoux D., Ravanat J.-L., Jaquinod M., Blondin G., other authors. ( 2009;). Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein. Nat Chem Biol 5: 53–59 [CrossRef] [PubMed].
    [Google Scholar]
  58. Wang P., Dadhwal P., Cheng Z., Zianni M.R., Rikihisa Y., Liang F.T., Li X.. ( 2013;). Borrelia burgdorferi oxidative stress regulator BosR directly represses lipoproteins primarily expressed in the tick during mammalian infection. Mol Microbiol 89: 1140–1153 [CrossRef] [PubMed].
    [Google Scholar]
  59. Xu H., Caimano M.J., Lin T., He M., Radolf J.D., Norris S.J., Gherardini F., Wolfe A.J., Yang X.F.. ( 2010;). Role of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS pathway in Borrelia burgdorferi. PLoS Pathog 6: e1001104 [CrossRef] [PubMed].
    [Google Scholar]
  60. Yang X., Goldberg M.S., Popova T.G., Schoeler G.B., Wikel S.K., Hagman K.E., Norgard M.V.. ( 2000;). Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi. Mol Microbiol 37: 1470–1479 [CrossRef] [PubMed].
    [Google Scholar]
  61. Yang X.F., Alani S.M., Norgard M.V.. ( 2003;). The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci U S A 100: 11001–11006 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000166
Loading
/content/journal/micro/10.1099/mic.0.000166
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error