The rod-shaped enteric intracellular pathogen and other species are the causative agents of bacillary dysentery. are able to spread within the epithelial lining of the gut, resulting in lesion formation, cramps and bloody stools. The outer membrane protein IcsA is essential for this spreading process. IcsA is the initiator of an actin-based form of motility whereby it allows the formation of a filamentous actin ‘tail’ at the bacterial pole. Importantly, IcsA is specifically positioned at the bacterial pole such that this process occurs asymmetrically. The mechanism of IcsA polarity is not completely understood, but it appears to be a multifactorial process involving factors intrinsic to IcsA and other regulating factors. In this study, we further investigated IcsA polarization by its intramolecular N-terminal and central polar-targeting (PT) regions (nPT and cPT regions, respectively). The results obtained support a role in polar localization for the cPT region and contend the role of the nPT region. We identified single IcsA residues that have measurable impacts on IcsA polarity augmentation, resulting in decreased sprading efficiency. Intriguingly, regions and residues involved in PT clustered around a highly conserved motif which may provide a functional scaffold for polarity-augmenting residues. How these results fit with the current model of IcsA polarity determination is discussed.


Article metrics loading...

Loading full text...

Full text loading...



  1. Bernardini M.L., Mounier J., d'Hauteville H., Coquis-Rondon M., Sansonetti P.J. (1989). Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actinProc Natl Acad Sci U S A 8638673871 [View Article][PubMed]. [Google Scholar]
  2. Bolivar F., Rodriguez R.L., Greene P.J., Betlach M.C., Heyneker H.L., Boyer H.W., Crosa J.H., Falkow S. (1977). Construction and characterization of new cloning vehicles. II. A multipurpose cloning systemGene 295113 [View Article][PubMed]. [Google Scholar]
  3. Brotcke Zumsteg A., Goosmann C., Brinkmann V., Morona R., Zychlinsky A. (2014). IcsA is a Shigella flexneri adhesin regulated by the type III secretion system and required for pathogenesisCell Host Microbe 15435445 [View Article][PubMed]. [Google Scholar]
  4. Calloni G., Chen T., Schermann S.M., Chang H.C., Genevaux P., Agostini F., Tartaglia G.G., Hayer-Hartl M., Hartl F.U. (2012). DnaK functions as a central hub in the E. coli chaperone networkCell Reports 1251264 [View Article][PubMed]. [Google Scholar]
  5. Carrió M.M., Villaverde A. (2005). Localization of chaperones DnaK and GroEL in bacterial inclusion bodiesJ Bacteriol 18735993601 [View Article][PubMed]. [Google Scholar]
  6. Castanie-Cornet M.P., Bruel N., Genevaux P. (2014). Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membraneBiochim Biophys Acta 184314421456 [View Article][PubMed]. [Google Scholar]
  7. Charles M., Pérez M., Kobil J.H., Goldberg M.B. (2001). Polar targeting of Shigella virulence factor IcsA in Enterobacteriacae and VibrioProc Natl Acad Sci U S A 9898719876 [View Article][PubMed]. [Google Scholar]
  8. Doyle M.T., Tran E.N., Morona R. (2015a). The passenger-associated transport repeat promotes virulence factor secretion efficiency and delineates a distinct autotransporter subtypeMol Microbiol 97315329 [View Article][PubMed]. [Google Scholar]
  9. Doyle M.T., Grabowicz M., May K.L., Morona R. (2015b). Lipopolysaccharide surface structure does not influence IcsA polarityFEMS Microbiol Lett 362 [View Article][PubMed]. [Google Scholar]
  10. Egile C., Loisel T.P., Laurent V., Li R., Pantaloni D., Sansonetti P.J., Carlier M.F. (1999). Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motilityJ Cell Biol 14613191332 [View Article][PubMed]. [Google Scholar]
  11. Finn R.D., Bateman A., Clements J., Coggill P., Eberhardt R.Y., Eddy S.R., Heger A., Hetherington K., Holm L., other authors. (2014). Pfam: the protein families databaseNucleic Acids Res 42(D1), D222D230 [View Article][PubMed]. [Google Scholar]
  12. Fixen K.R., Janakiraman A., Garrity S., Slade D.J., Gray A.N., Karahan N., Hochschild A., Goldberg M.B. (2012). Genetic reporter system for positioning of proteins at the bacterial poleMBio 3e00251e00612 [View Article][PubMed]. [Google Scholar]
  13. Fukuda I., Suzuki T., Munakata H., Hayashi N., Katayama E., Yoshikawa M., Sasakawa C. (1995). Cleavage of Shigella surface protein VirG occurs at a specific site, but the secretion is not essential for intracellular spreadingJ Bacteriol 17717191726[PubMed]. [Google Scholar]
  14. Goldberg M.B., Theriot J.A. (1995). Shigella flexneri surface protein IcsA is sufficient to direct actin-based motilityProc Natl Acad Sci U S A 9265726576 [View Article][PubMed]. [Google Scholar]
  15. Goldberg M.B., Bârzu O., Parsot C., Sansonetti P.J. (1993). Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movementJ Bacteriol 17521892196[PubMed]. [Google Scholar]
  16. Janakiraman A., Fixen K.R., Gray A.N., Niki H., Goldberg M.B. (2009). A genome-scale proteomic screen identifies a role for DnaK in chaperoning of polar autotransporters in ShigellaJ Bacteriol 19163006311 [View Article][PubMed]. [Google Scholar]
  17. Kocks C., Marchand J.B., Gouin E., d'Hauteville H., Sansonetti P.J., Carlier M.F., Cossart P. (1995). The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectivelyMol Microbiol 18413423 [View Article][PubMed]. [Google Scholar]
  18. Kovach M.E., Elzer P.H., Hill D.S., Robertson G.T., Farris M.A., Roop R.M. II, Peterson K.M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettesGene 166175176 [View Article][PubMed]. [Google Scholar]
  19. Lett M.C., Sasakawa C., Okada N., Sakai T., Makino S., Yamada M., Komatsu K., Yoshikawa M. (1989). virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the virG protein and determination of the complete coding sequenceJ Bacteriol 171353359[PubMed]. [Google Scholar]
  20. Leyton D.L., Rossiter A.E., Henderson I.R. (2012). From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesisNat Rev Microbiol 10213225 [View Article][PubMed]. [Google Scholar]
  21. Lima I.F., Havt A., Lima A.A. (2015). Update on molecular epidemiology of Shigella infectionCurr Opin Gastroenterol 313037 [View Article][PubMed]. [Google Scholar]
  22. Lindner A.B., Madden R., Demarez A., Stewart E.J., Taddei F. (2008). Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenationProc Natl Acad Sci U S A 10530763081 [View Article][PubMed]. [Google Scholar]
  23. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L. (1975). Electrophoretic resolution of the major outer membrane protein of Escherichia coli K12 into four bandsFEBS Lett 58254258 [View Article][PubMed]. [Google Scholar]
  24. Makino S., Sasakawa C., Kamata K., Kurata T., Yoshikawa M. (1986). A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2aCell 46551555 [View Article][PubMed]. [Google Scholar]
  25. May K.L., Morona R. (2008). Mutagenesis of the Shigella flexneri autotransporter IcsA reveals novel functional regions involved in IcsA biogenesis and recruitment of host neural Wiscott-Aldrich syndrome proteinJ Bacteriol 19046664676 [View Article][PubMed]. [Google Scholar]
  26. Niyogi S.K. (2005). ShigellosisJ Microbiol 43133143[PubMed]. [Google Scholar]
  27. Oaks E.V., Wingfield M.E., Formal S.B. (1985). Plaque formation by virulent Shigella flexneriInfect Immun 48124129[PubMed]. [Google Scholar]
  28. Robbins J.R., Monack D., McCallum S.J., Vegas A., Pham E., Goldberg M.B., Theriot J.A. (2001). The making of a gradient: IcsA (VirG) polarity in Shigella flexneriMol Microbiol 41861872 [View Article][PubMed]. [Google Scholar]
  29. Rokney A., Shagan M., Kessel M., Smith Y., Rosenshine I., Oppenheim A.B. (2009). E. coli transports aggregated proteins to the poles by a specific and energy-dependent processJ Mol Biol 392589601 [View Article][PubMed]. [Google Scholar]
  30. Roy A., Kucukural A., Zhang Y. (2010). I-TASSER: a unified platform for automated protein structure and function predictionNat Protoc 5725738 [View Article][PubMed]. [Google Scholar]
  31. Sabate R., de Groot N.S., Ventura S. (2010). Protein folding and aggregation in bacteriaCell Mol Life Sci 6726952715 [View Article][PubMed]. [Google Scholar]
  32. Saibil H.R. (2013). Machinery to reverse irreversible aggregatesScience 33910401041 [View Article][PubMed]. [Google Scholar]
  33. Scholz O., Thiel A., Hillen W., Niederweis M. (2000). Quantitative analysis of gene expression with an improved green fluorescent protein.p6Eur J Biochem 26715651570 [View Article][PubMed]. [Google Scholar]
  34. Schroeder G.N., Hilbi H. (2008). Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretionClin Microbiol Rev 21134156 [View Article][PubMed]. [Google Scholar]
  35. Snapper S.B., Takeshima F., Antón I., Liu C.H., Thomas S.M., Nguyen D., Dudley D., Fraser H., Purich D., other authors. (2001). N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motilityNat Cell Biol 3897904 [View Article][PubMed]. [Google Scholar]
  36. Steinhauer J., Agha R., Pham T., Varga A.W., Goldberg M.B. (1999). The unipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of IcsA occurs over the entire bacterial surfaceMol Microbiol 32367377 [View Article][PubMed]. [Google Scholar]
  37. Suzuki T., Lett M.C., Sasakawa C. (1995). Extracellular transport of VirG protein in ShigellaJ Biol Chem 2703087430880 [View Article][PubMed]. [Google Scholar]
  38. Suzuki T., Mimuro H., Suetsugu S., Miki H., Takenawa T., Sasakawa C. (2002). Neural Wiskott-Aldrich syndrome protein (N-WASP) is the specific ligand for Shigella VirG among the WASP family and determines the host cell type allowing actin-based spreadingCell Microbiol 4223233 [View Article][PubMed]. [Google Scholar]
  39. Teh M.Y., Morona R. (2013). Identification of Shigella flexneri IcsA residues affecting interaction with N-WASP, and evidence for IcsA-IcsA co-operative interactionPLoS One 8e55152 [View Article][PubMed]. [Google Scholar]
  40. Teh M.Y., Tran E.N., Morona R. (2012). Absence of O antigen suppresses Shigella flexneri IcsA autochaperone region mutationsMicrobiology 15828352850 [View Article][PubMed]. [Google Scholar]
  41. Tran E.N., Doyle M.T., Morona R. (2013). LPS unmasking of Shigella flexneri reveals preferential localisation of tagged outer membrane protease IcsP to septa and new polesPLoS One 8e70508 [View Article][PubMed]. [Google Scholar]
  42. Valencia-Gallardo C.M., Carayol N., Tran Van Nhieu G. (2015). Cytoskeletal mechanics during Shigella invasion and dissemination in epithelial cellsCell Microbiol 17174182 [View Article][PubMed]. [Google Scholar]
  43. Van den Bosch L., Morona R. (2003). The actin-based motility defect of a Shigella flexneri rmlD rough LPS mutant is not due to loss of IcsA polarityMicrob Pathog 351118 [View Article][PubMed]. [Google Scholar]
  44. Van den Bosch L., Manning P.A., Morona R. (1997). Regulation of O-antigen chain length is required for Shigella flexneri virulenceMol Microbiol 23765775 [View Article][PubMed]. [Google Scholar]
  45. von Seidlein L., Kim D.R., Ali M., Lee H., Wang X., Thiem V.D., Canh G., Chaicumpa W., Agtini M.D., other authors. (2006). A multicentre study of Shigella diarrhoea in six Asian countries: disease burden, clinical manifestations, and microbiologyPLoS Med 3e353 [View Article][PubMed]. [Google Scholar]
  46. Winkler J., Seybert A., König L., Pruggnaller S., Haselmann U., Sourjik V., Weiss M., Frangakis A.S., Mogk A., Bukau B. (2010). Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageingEMBO J 29910923 [View Article][PubMed]. [Google Scholar]
  47. Xu D., Zhang J., Roy A., Zhang Y. (2011). Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinementProteins 79(Suppl 10), 147160 [View Article][PubMed]. [Google Scholar]

Data & Media loading...


Supplementary Data

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error