1887

Abstract

The rod-shaped enteric intracellular pathogen and other species are the causative agents of bacillary dysentery. are able to spread within the epithelial lining of the gut, resulting in lesion formation, cramps and bloody stools. The outer membrane protein IcsA is essential for this spreading process. IcsA is the initiator of an actin-based form of motility whereby it allows the formation of a filamentous actin ‘tail’ at the bacterial pole. Importantly, IcsA is specifically positioned at the bacterial pole such that this process occurs asymmetrically. The mechanism of IcsA polarity is not completely understood, but it appears to be a multifactorial process involving factors intrinsic to IcsA and other regulating factors. In this study, we further investigated IcsA polarization by its intramolecular N-terminal and central polar-targeting (PT) regions (nPT and cPT regions, respectively). The results obtained support a role in polar localization for the cPT region and contend the role of the nPT region. We identified single IcsA residues that have measurable impacts on IcsA polarity augmentation, resulting in decreased sprading efficiency. Intriguingly, regions and residues involved in PT clustered around a highly conserved motif which may provide a functional scaffold for polarity-augmenting residues. How these results fit with the current model of IcsA polarity determination is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000165
2015-11-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2087.html?itemId=/content/journal/micro/10.1099/mic.0.000165&mimeType=html&fmt=ahah

References

  1. Bernardini M.L., Mounier J., d'Hauteville H., Coquis-Rondon M., Sansonetti P.J.. ( 1989;). Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci U S A 86: 3867–3871 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bolivar F., Rodriguez R.L., Greene P.J., Betlach M.C., Heyneker H.L., Boyer H.W., Crosa J.H., Falkow S.. ( 1977;). Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2: 95–113 [CrossRef] [PubMed].
    [Google Scholar]
  3. Brotcke Zumsteg A., Goosmann C., Brinkmann V., Morona R., Zychlinsky A.. ( 2014;). IcsA is a Shigella flexneri adhesin regulated by the type III secretion system and required for pathogenesis. Cell Host Microbe 15: 435–445 [CrossRef] [PubMed].
    [Google Scholar]
  4. Calloni G., Chen T., Schermann S.M., Chang H.C., Genevaux P., Agostini F., Tartaglia G.G., Hayer-Hartl M., Hartl F.U.. ( 2012;). DnaK functions as a central hub in the E. coli chaperone network. Cell Reports 1: 251–264 [CrossRef] [PubMed].
    [Google Scholar]
  5. Carrió M.M., Villaverde A.. ( 2005;). Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. J Bacteriol 187: 3599–3601 [CrossRef] [PubMed].
    [Google Scholar]
  6. Castanie-Cornet M.P., Bruel N., Genevaux P.. ( 2014;). Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim Biophys Acta 1843: 1442–1456 [CrossRef] [PubMed].
    [Google Scholar]
  7. Charles M., Pérez M., Kobil J.H., Goldberg M.B.. ( 2001;). Polar targeting of Shigella virulence factor IcsA in Enterobacteriacae and Vibrio. Proc Natl Acad Sci U S A 98: 9871–9876 [CrossRef] [PubMed].
    [Google Scholar]
  8. Doyle M.T., Tran E.N., Morona R.. ( 2015a;). The passenger-associated transport repeat promotes virulence factor secretion efficiency and delineates a distinct autotransporter subtype. Mol Microbiol 97: 315–329 [CrossRef] [PubMed].
    [Google Scholar]
  9. Doyle M.T., Grabowicz M., May K.L., Morona R.. ( 2015b;). Lipopolysaccharide surface structure does not influence IcsA polarity. FEMS Microbiol Lett 362: [CrossRef] [PubMed].
    [Google Scholar]
  10. Egile C., Loisel T.P., Laurent V., Li R., Pantaloni D., Sansonetti P.J., Carlier M.F.. ( 1999;). Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Biol 146: 1319–1332 [CrossRef] [PubMed].
    [Google Scholar]
  11. Finn R.D., Bateman A., Clements J., Coggill P., Eberhardt R.Y., Eddy S.R., Heger A., Hetherington K., Holm L., other authors. ( 2014;). Pfam: the protein families database. Nucleic Acids Res 42: (D1), D222–D230 [CrossRef] [PubMed].
    [Google Scholar]
  12. Fixen K.R., Janakiraman A., Garrity S., Slade D.J., Gray A.N., Karahan N., Hochschild A., Goldberg M.B.. ( 2012;). Genetic reporter system for positioning of proteins at the bacterial pole. MBio 3: e00251–e00612 [CrossRef] [PubMed].
    [Google Scholar]
  13. Fukuda I., Suzuki T., Munakata H., Hayashi N., Katayama E., Yoshikawa M., Sasakawa C.. ( 1995;). Cleavage of Shigella surface protein VirG occurs at a specific site, but the secretion is not essential for intracellular spreading. J Bacteriol 177: 1719–1726 [PubMed].
    [Google Scholar]
  14. Goldberg M.B., Theriot J.A.. ( 1995;). Shigella flexneri surface protein IcsA is sufficient to direct actin-based motility. Proc Natl Acad Sci U S A 92: 6572–6576 [CrossRef] [PubMed].
    [Google Scholar]
  15. Goldberg M.B., Bârzu O., Parsot C., Sansonetti P.J.. ( 1993;). Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement. J Bacteriol 175: 2189–2196 [PubMed].
    [Google Scholar]
  16. Janakiraman A., Fixen K.R., Gray A.N., Niki H., Goldberg M.B.. ( 2009;). A genome-scale proteomic screen identifies a role for DnaK in chaperoning of polar autotransporters in Shigella. J Bacteriol 191: 6300–6311 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kocks C., Marchand J.B., Gouin E., d'Hauteville H., Sansonetti P.J., Carlier M.F., Cossart P.. ( 1995;). The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively. Mol Microbiol 18: 413–423 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kovach M.E., Elzer P.H., Hill D.S., Robertson G.T., Farris M.A., Roop R.M. II, Peterson K.M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175–176 [CrossRef] [PubMed].
    [Google Scholar]
  19. Lett M.C., Sasakawa C., Okada N., Sakai T., Makino S., Yamada M., Komatsu K., Yoshikawa M.. ( 1989;). virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the virG protein and determination of the complete coding sequence. J Bacteriol 171: 353–359 [PubMed].
    [Google Scholar]
  20. Leyton D.L., Rossiter A.E., Henderson I.R.. ( 2012;). From self sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nat Rev Microbiol 10: 213–225 [CrossRef] [PubMed].
    [Google Scholar]
  21. Lima I.F., Havt A., Lima A.A.. ( 2015;). Update on molecular epidemiology of Shigella infection. Curr Opin Gastroenterol 31: 30–37 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lindner A.B., Madden R., Demarez A., Stewart E.J., Taddei F.. ( 2008;). Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc Natl Acad Sci U S A 105: 3076–3081 [CrossRef] [PubMed].
    [Google Scholar]
  23. Lugtenberg B., Meijers J., Peters R., van der Hoek P., van Alphen L.. ( 1975;). Electrophoretic resolution of the major outer membrane protein of Escherichia coli K12 into four bands. FEBS Lett 58: 254–258 [CrossRef] [PubMed].
    [Google Scholar]
  24. Makino S., Sasakawa C., Kamata K., Kurata T., Yoshikawa M.. ( 1986;). A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a. Cell 46: 551–555 [CrossRef] [PubMed].
    [Google Scholar]
  25. May K.L., Morona R.. ( 2008;). Mutagenesis of the Shigella flexneri autotransporter IcsA reveals novel functional regions involved in IcsA biogenesis and recruitment of host neural Wiscott-Aldrich syndrome protein. J Bacteriol 190: 4666–4676 [CrossRef] [PubMed].
    [Google Scholar]
  26. Niyogi S.K.. ( 2005;). Shigellosis. J Microbiol 43: 133–143 [PubMed].
    [Google Scholar]
  27. Oaks E.V., Wingfield M.E., Formal S.B.. ( 1985;). Plaque formation by virulent Shigella flexneri. Infect Immun 48: 124–129 [PubMed].
    [Google Scholar]
  28. Robbins J.R., Monack D., McCallum S.J., Vegas A., Pham E., Goldberg M.B., Theriot J.A.. ( 2001;). The making of a gradient: IcsA (VirG) polarity in Shigella flexneri. Mol Microbiol 41: 861–872 [CrossRef] [PubMed].
    [Google Scholar]
  29. Rokney A., Shagan M., Kessel M., Smith Y., Rosenshine I., Oppenheim A.B.. ( 2009;). E. coli transports aggregated proteins to the poles by a specific and energy-dependent process. J Mol Biol 392: 589–601 [CrossRef] [PubMed].
    [Google Scholar]
  30. Roy A., Kucukural A., Zhang Y.. ( 2010;). I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5: 725–738 [CrossRef] [PubMed].
    [Google Scholar]
  31. Sabate R., de Groot N.S., Ventura S.. ( 2010;). Protein folding and aggregation in bacteria. Cell Mol Life Sci 67: 2695–2715 [CrossRef] [PubMed].
    [Google Scholar]
  32. Saibil H.R.. ( 2013;). Machinery to reverse irreversible aggregates. Science 339: 1040–1041 [CrossRef] [PubMed].
    [Google Scholar]
  33. Scholz O., Thiel A., Hillen W., Niederweis M.. ( 2000;). Quantitative analysis of gene expression with an improved green fluorescent protein.p6. Eur J Biochem 267: 1565–1570 [CrossRef] [PubMed].
    [Google Scholar]
  34. Schroeder G.N., Hilbi H.. ( 2008;). Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 21: 134–156 [CrossRef] [PubMed].
    [Google Scholar]
  35. Snapper S.B., Takeshima F., Antón I., Liu C.H., Thomas S.M., Nguyen D., Dudley D., Fraser H., Purich D., other authors. ( 2001;). N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nat Cell Biol 3: 897–904 [CrossRef] [PubMed].
    [Google Scholar]
  36. Steinhauer J., Agha R., Pham T., Varga A.W., Goldberg M.B.. ( 1999;). The unipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of IcsA occurs over the entire bacterial surface. Mol Microbiol 32: 367–377 [CrossRef] [PubMed].
    [Google Scholar]
  37. Suzuki T., Lett M.C., Sasakawa C.. ( 1995;). Extracellular transport of VirG protein in Shigella. J Biol Chem 270: 30874–30880 [CrossRef] [PubMed].
    [Google Scholar]
  38. Suzuki T., Mimuro H., Suetsugu S., Miki H., Takenawa T., Sasakawa C.. ( 2002;). Neural Wiskott-Aldrich syndrome protein (N-WASP) is the specific ligand for Shigella VirG among the WASP family and determines the host cell type allowing actin-based spreading. Cell Microbiol 4: 223–233 [CrossRef] [PubMed].
    [Google Scholar]
  39. Teh M.Y., Morona R.. ( 2013;). Identification of Shigella flexneri IcsA residues affecting interaction with N-WASP, and evidence for IcsA-IcsA co-operative interaction. PLoS One 8: e55152 [CrossRef] [PubMed].
    [Google Scholar]
  40. Teh M.Y., Tran E.N., Morona R.. ( 2012;). Absence of O antigen suppresses Shigella flexneri IcsA autochaperone region mutations. Microbiology 158: 2835–2850 [CrossRef] [PubMed].
    [Google Scholar]
  41. Tran E.N., Doyle M.T., Morona R.. ( 2013;). LPS unmasking of Shigella flexneri reveals preferential localisation of tagged outer membrane protease IcsP to septa and new poles. PLoS One 8: e70508 [CrossRef] [PubMed].
    [Google Scholar]
  42. Valencia-Gallardo C.M., Carayol N., Tran Van Nhieu G.. ( 2015;). Cytoskeletal mechanics during Shigella invasion and dissemination in epithelial cells. Cell Microbiol 17: 174–182 [CrossRef] [PubMed].
    [Google Scholar]
  43. Van den Bosch L., Morona R.. ( 2003;). The actin-based motility defect of a Shigella flexneri rmlD rough LPS mutant is not due to loss of IcsA polarity. Microb Pathog 35: 11–18 [CrossRef] [PubMed].
    [Google Scholar]
  44. Van den Bosch L., Manning P.A., Morona R.. ( 1997;). Regulation of O-antigen chain length is required for Shigella flexneri virulence. Mol Microbiol 23: 765–775 [CrossRef] [PubMed].
    [Google Scholar]
  45. von Seidlein L., Kim D.R., Ali M., Lee H., Wang X., Thiem V.D., Canh G., Chaicumpa W., Agtini M.D., other authors. ( 2006;). A multicentre study of Shigella diarrhoea in six Asian countries: disease burden, clinical manifestations, and microbiology. PLoS Med 3: e353 [CrossRef] [PubMed].
    [Google Scholar]
  46. Winkler J., Seybert A., König L., Pruggnaller S., Haselmann U., Sourjik V., Weiss M., Frangakis A.S., Mogk A., Bukau B.. ( 2010;). Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J 29: 910–923 [CrossRef] [PubMed].
    [Google Scholar]
  47. Xu D., Zhang J., Roy A., Zhang Y.. ( 2011;). Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement. Proteins 79: (Suppl 10), 147–160 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000165
Loading
/content/journal/micro/10.1099/mic.0.000165
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error