1887

Abstract

NAD is a necessary cofactor present in all living cells. Some bacteria cannot synthesize NAD and must use the salvage pathway to import niacin or nicotinamide riboside via substrate importers NiaX and PnuC, respectively. Although homologues of these two importers and their substrates have been identified in other organisms, limited data exist in , specifically, on its effect on overall virulence. Here, we sought to characterize the substrate specificity of NiaX and PnuC in TIGR4 and the contribution of these proteins to virulence of the pathogen. Although binding affinity of each importer for nicotinamide mononucleotide may overlap, we found NiaX to specifically import nicotinamide and nicotinic acid, and PnuC to be primarily responsible for nicotinamide riboside import. Furthermore, a mutant is completely attenuated during both intranasal and intratracheal infections in mice. Taken together, these findings underscore the importance of substrate salvage in pneumococcal pathogenesis and indicate that PnuC could potentially be a viable small-molecule therapeutic target to alleviate disease progression in the host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000164
2015-11-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2127.html?itemId=/content/journal/micro/10.1099/mic.0.000164&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.. ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J.. ( 1997;). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402 [CrossRef] [PubMed].
    [Google Scholar]
  3. Braun M., Bungert S., Friedrich T.. ( 1998;). Characterization of the overproduced NADH dehydrogenase fragment of the NADH : ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochemistry 37: 1861–1867 [CrossRef] [PubMed].
    [Google Scholar]
  4. Brown K.D., Maqsood S., Huang J.Y., Pan Y., Harkcom W., Li W., Sauve A., Verdin E., Jaffrey S.R.. ( 2014;). Activation of SIRT3 by the NAD? precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab 20: 1059–1068 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cantó C., Houtkooper R.H., Pirinen E., Youn D.Y., Oosterveer M.H., Cen Y., Fernandez-Marcos P.J., Yamamoto H., Andreux P.A., other authors. ( 2012;). The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15: 838–847 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chalkiadaki A., Guarente L.. ( 2012;). Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat Rev Endocrinol 8: 287–296 [CrossRef] [PubMed].
    [Google Scholar]
  7. Chandler J.L., Gholson R.K.. ( 1972;). De novo biosynthesis of nicotinamide adenine dinucleotide in Escherichia coli: excretion of quinolinic acid by mutants lacking quinolinate phosphoribosyl transferase. J Bacteriol 111: 98–102 [PubMed].
    [Google Scholar]
  8. Chewapreecha C., Marttinen P., Croucher N.J., Salter S.J., Harris S.R., Mather A.E., Hanage W.P., Goldblatt D., Nosten F.H., other authors. ( 2014;). Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet 10: e1004547 [CrossRef] [PubMed].
    [Google Scholar]
  9. Chiarugi A., Dölle C., Felici R., Ziegler M.. ( 2012;). The NAD metabolome – a key determinant of cancer cell biology. Nat Rev Cancer 12: 741–752 [CrossRef] [PubMed].
    [Google Scholar]
  10. Frederick D.W., Davis J.G., Dávila A. Jr, Agarwal B., Michan S., Puchowicz M.A., Nakamaru-Ogiso E., Baur J.A.. ( 2015;). Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J Biol Chem 290: 1546–1558 [CrossRef] [PubMed].
    [Google Scholar]
  11. Friedrich T.. ( 1998;). The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochim Biophys Acta 1364: 134–146 [CrossRef] [PubMed].
    [Google Scholar]
  12. Granok A.B., Parsonage D., Ross R.P., Caparon M.G.. ( 2000;). The RofA binding site in Streptococcus pyogenes is utilized in multiple transcriptional pathways. J Bacteriol 182: 1529–1540 [CrossRef] [PubMed].
    [Google Scholar]
  13. Grose J.H., Bergthorsson U., Xu Y., Sterneckert J., Khodaverdian B., Roth J.R.. ( 2005;). Assimilation of nicotinamide mononucleotide requires periplasmic AphA phosphatase in Salmonella enterica. J Bacteriol 187: 4521–4530 [CrossRef] [PubMed].
    [Google Scholar]
  14. Herbert M., Sauer E., Smethurst G., Kraiss A., Hilpert A.K., Reidl J.. ( 2003;). Nicotinamide ribosyl uptake mutants in Haemophilus influenzae. Infect Immun 71: 5398–5401 [CrossRef] [PubMed].
    [Google Scholar]
  15. Horton R.M., Cai Z.L., Ho S.N., Pease L.R.. ( 1990;). Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8: 528–535 [PubMed].
    [Google Scholar]
  16. Huang N., Sorci L., Zhang X., Brautigam C.A., Li X., Raffaelli N., Magni G., Grishin N.V., Osterman A.L., Zhang H.. ( 2008;). Bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase: structure and function in bacterial NAD metabolism. Structure 16: 196–209 [CrossRef] [PubMed].
    [Google Scholar]
  17. Huang N., De Ingeniis J., Galeazzi L., Mancini C., Korostelev Y.D., Rakhmaninova A.B., Gelfand M.S., Rodionov D.A., Raffaelli N., Zhang H.. ( 2009;). Structure and function of an ADP-ribose-dependent transcriptional regulator of NAD metabolism. Structure 17: 939–951 [CrossRef] [PubMed].
    [Google Scholar]
  18. Ishino Y., Shinagawa H., Makino K., Tsunasawa S., Sakiyama F., Nakata A.. ( 1986;). Nucleotide sequence of the lig gene and primary structure of DNA ligase of Escherichia coli. Mol Gen Genet 204: 1–7 [CrossRef] [PubMed].
    [Google Scholar]
  19. Jaehme M., Guskov A., Slotboom D.J.. ( 2014;). Crystal structure of the vitamin B3 transporter PnuC, a full-length SWEET homolog. Nat Struct Mol Biol 21: 1013–1015 [CrossRef] [PubMed].
    [Google Scholar]
  20. Jurtshuk P. Jr. ( 1996;). Bacterial Metabolism. In Medical Microbiology, 4th edn, chapter 4. Edited by S. Baron. Galveston, TX: University of Texas Medical Branch;.
    [Google Scholar]
  21. Kemmer G., Reilly T.J., Schmidt-Brauns J., Zlotnik G.W., Green B.A., Fiske M.J., Herbert M., Kraiss A., Schlör S., other authors. ( 2001;). NadN and e (P4) are essential for utilization of NAD and nicotinamide mononucleotide but not nicotinamide riboside in Haemophilus influenzae. J Bacteriol 183: 3974–3981 [CrossRef] [PubMed].
    [Google Scholar]
  22. Khan N.A., Auranen M., Paetau I., Pirinen E., Euro L., Forsström S., Pasila L., Velagapudi V., Carroll C.J., other authors. ( 2014;). Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med 6: 721–731 [PubMed].
    [Google Scholar]
  23. Kotrbova-Kozak A., Kotrba P., Inui M., Sajdok J., Yukawa H.. ( 2007;). Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R. Appl Microbiol Biotechnol 76: 1347–1356 [CrossRef] [PubMed].
    [Google Scholar]
  24. Kurnasov O.V., Polanuyer B.M., Ananta S., Sloutsky R., Tam A., Gerdes S.Y., Osterman A.L.. ( 2002;). Ribosylnicotinamide kinase domain of NadR protein: identification and implications in NAD biosynthesis. J Bacteriol 184: 6906–6917 [CrossRef] [PubMed].
    [Google Scholar]
  25. Lacks S., Hotchkiss R.D.. ( 1960;). A study of the genetic material determining an enzyme activity in Pneumococcus. Biochim Biophys Acta 39: 508–518 [CrossRef] [PubMed].
    [Google Scholar]
  26. Luong T.T., Kim E.H., Bak J.P., Nguyen C.T., Choi S., Briles D.E., Pyo S., Rhee D.K.. ( 2015;). Ethanol-induced alcohol dehydrogenase E (AdhE) potentiates pneumolysin in Streptococcus pneumoniae. Infect Immun 83: 108–119 [CrossRef] [PubMed].
    [Google Scholar]
  27. Nobelmann B., Lengeler J.W.. ( 1996;). Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. . In J Bacteriol178 6790–6795 [PubMed].
    [Google Scholar]
  28. Patel M.S., Nemeria N.S., Furey W., Jordan F.. ( 2014;). The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem 289: 16615–16623 [CrossRef] [PubMed].
    [Google Scholar]
  29. Rodionov D.A., Li X., Rodionova I.A., Yang C., Sorci L., Dervyn E., Martynowski D., Zhang H., Gelfand M.S., Osterman A.L.. ( 2008;). Transcriptional regulation of NAD metabolism in bacteria: genomic reconstruction of NiaR (YrxA) regulon. Nucleic Acids Res 36: 2032–2046 [CrossRef] [PubMed].
    [Google Scholar]
  30. Rodionov D.A., Hebbeln P., Eudes A., ter Beek J., Rodionova I.A., Erkens G.B., Slotboom D.J., Gelfand M.S., Osterman A.L., other authors. ( 2009;). A novel class of modular transporters for vitamins in prokaryotes. J Bacteriol 191: 42–51 [CrossRef] [PubMed].
    [Google Scholar]
  31. Satoh M.S., Lindahl T.. ( 1992;). Role of poly(ADP-ribose) formation in DNA repair. Nature 356: 356–358 [CrossRef] [PubMed].
    [Google Scholar]
  32. Sauer E., Merdanovic M., Mortimer A.P., Bringmann G., Reidl J.. ( 2004;). PnuC and the utilization of the nicotinamide riboside analog 3-aminopyridine in Haemophilus influenzae. Antimicrob Agents Chemother 48: 4532–4541 [CrossRef] [PubMed].
    [Google Scholar]
  33. Schmidt-Brauns J., Herbert M., Kemmer G., Kraiss A., Schlör S., Reidl J.. ( 2001;). Is a NAD pyrophosphatase activity necessary for Haemophilus influenzae type b multiplication in the blood stream?. Int J Med Microbiol 291: 219–225 [CrossRef] [PubMed].
    [Google Scholar]
  34. Singh S.K., Kurnasov O.V., Chen B., Robinson H., Grishin N.V., Osterman A.L., Zhang H.. ( 2002;). Crystal structure of Haemophilus influenzae NadR protein. A bifunctional enzyme endowed with NMN adenyltransferase and ribosylnicotinamide kinase activities. J Biol Chem 277: 33291–33299 [CrossRef] [PubMed].
    [Google Scholar]
  35. Sorci L., Martynowski D., Rodionov D.A., Eyobo Y., Zogaj X., Klose K.E., Nikolaev E.V., Magni G., Zhang H., Osterman A.L.. ( 2009;). Nicotinamide mononucleotide synthetase is the key enzyme for an alternative route of NAD biosynthesis in Francisella tularensis. Proc Natl Acad Sci U S A 106: 3083–3088 [CrossRef] [PubMed].
    [Google Scholar]
  36. Sorci L., Blaby I.K., Rodionova I.A., De Ingeniis J., Tkachenko S., de Crécy-Lagard V., Osterman A.L.. ( 2013;). Quinolinate salvage and insights for targeting NAD biosynthesis in group A streptococci. J Bacteriol 195: 726–732 [CrossRef] [PubMed].
    [Google Scholar]
  37. Spector M.P., Hill J.M., Holley E.A., Foster J.W.. ( 1985;). Genetic characterization of pyridine nucleotide uptake mutants of Salmonella typhimurium. J Gen Microbiol 131: 1313–1322 [PubMed].
    [Google Scholar]
  38. Temple L., Sage A., Christie G.E., Phibbs P.V. Jr. ( 1994;). Two genes for carbohydrate catabolism are divergently transcribed from a region of DNA containing the hexC locus in Pseudomonas aeruginosa PAO1. J Bacteriol 176: 4700–4709 [PubMed].
    [Google Scholar]
  39. ter Beek J., Duurkens R.H., Erkens G.B., Slotboom D.J.. ( 2011;). Quaternary structure and functional unit of energy coupling factor (ECF)-type transporters. J Biol Chem 286: 5471–5475 [CrossRef] [PubMed].
    [Google Scholar]
  40. Wilkinson A., Day J., Bowater R.. ( 2001;). Bacterial DNA ligases. Mol Microbiol 40: 1241–1248 [CrossRef] [PubMed].
    [Google Scholar]
  41. Zhu N., Olivera B.M., Roth J.R.. ( 1988;). Identification of a repressor gene involved in the regulation of NAD de novo biosynthesis in Salmonella typhimurium. J Bacteriol 170: 117–125.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000164
Loading
/content/journal/micro/10.1099/mic.0.000164
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error