1887

Abstract

Small acid-soluble proteins (SASPs) play an important role in protection of DNA in dormant bacterial endospores against damage by heat, UV radiation or enzymic degradation. In the genome of the strict anaerobe , five genes encoding SASPs have been annotated and here a further sixth candidate is suggested. The genes are expressed in parallel dependent upon Spo0A, a master regulator of sporulation. Analysis of the transcription start points revealed a σ or a σ consensus promoter upstream of each gene, confirming a forespore-specific gene expression. SASPs were termed SspA (Cac2365), SspB (Cac1522), SspD (Cac1620), SspF (Cac2372), SspH (Cac1663) and Tlp (Cac1487). Here it is shown that with the exception of Tlp, every purified recombinant SASP is able to bind DNA thereby protecting it against enzymic degradation by DNase I. Moreover, SspB and SspD were specifically cleaved by the two germination-specific proteases GPR (Cac1275) and YyaC (Cac2857), which were overexpressed in and activated by an autocleavage reaction. Thus, for the first time to our knowledge, GPR-like activity and SASP specificity could be demonstrated for a YyaC-like protein. Collectively, the results assign SspA, SspB, SspD, SspF and SspH of as members of α/β-type SASPs, whereas Tlp seems to be a non-DNA-binding spore protein of unknown function. In acetic acid-extracted proteins of dormant spores of , SspA was identified almost exclusively, indicating its dominant biological role as a major α/β-type SASP .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000162
2015-11-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2098.html?itemId=/content/journal/micro/10.1099/mic.0.000162&mimeType=html&fmt=ahah

References

  1. Bahl H., Andersch W., Gottschalk G.. ( 1982;). Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat. Eur J Appl Microbiol Biotechnol 15: 201–205 [CrossRef].
    [Google Scholar]
  2. Bradford M.M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72: 248–254 [CrossRef] [PubMed].
    [Google Scholar]
  3. Cabrera-Martinez R.M., Mason J.M., Setlow B., Waites W.M., Setlow P.. ( 1989;). Purification and amino acid sequence of two small, acid-soluble proteins from Clostridium bifermentans spores. FEMS Microbiol Lett 61: 139–143 [CrossRef] [PubMed].
    [Google Scholar]
  4. Carrillo-Martinez Y., Setlow P.. ( 1994;). Properties of Bacillus subtilis small, acid-soluble spore proteins with changes in the sequence recognized by their specific protease. J Bacteriol 176: 5357–5363 [PubMed].
    [Google Scholar]
  5. Carroll T.M.. ( 2008;). Germination protease: an atypical aspartic acid protease in Bacillus and Clostridium Doctoral dissertation. Paper AAI3313266. http://digitalcommons.uconn.edu/dissertations/AAI3313266.
    [Google Scholar]
  6. Carroll T.M., Setlow P.. ( 2005;). Site-directed mutagenesis and structural studies suggest that the germination protease, GPR, in spores of Bacillus species is an atypical aspartic acid protease. J Bacteriol 187: 7119–7125 [CrossRef] [PubMed].
    [Google Scholar]
  7. Connors M.J., Mason J.M., Setlow P.. ( 1986;). Cloning and nucleotide sequencing of genes for three small, acid-soluble proteins from Bacillus subtilis spores. J Bacteriol 166: 417–425 [PubMed].
    [Google Scholar]
  8. Driks A.. ( 2002;). Proteins of the spore core and coat. [CrossRef] In Bacillus subtilis and its Closest Relatives: from Genes to Cells, pp. 527–535. Edited by Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  9. Dürre P.. ( 2005;). Sporulation in clostridia (genetics). . In Handbook on Clostridia, pp. 659–669. Edited by Dürre P.. Boca Raton, FL: CRC Press; [CrossRef].
    [Google Scholar]
  10. Dürre P.. ( 2011;). Fermentative production of butanol – the academic perspective. Curr Opin Biotechnol 22: 331–336 [CrossRef] [PubMed].
    [Google Scholar]
  11. Dürre P., Hollergschwandner C.. ( 2004;). Initiation of endospore formation in Clostridium acetobutylicum. Anaerobe 10: 69–74 [CrossRef] [PubMed].
    [Google Scholar]
  12. Fischer R.J., Oehmcke S., Meyer U., Mix M., Schwarz K., Fiedler T., Bahl H.. ( 2006;). Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH. J Bacteriol 188: 5469–5478 [CrossRef] [PubMed].
    [Google Scholar]
  13. Francesconi S.C., MacAlister T.J., Setlow B., Setlow P.. ( 1988;). Immunoelectron microscopic localization of small, acid-soluble spore proteins in sporulating cells of Bacillus subtilis. J Bacteriol 170: 5963–5967.
    [Google Scholar]
  14. Galperin M.Y., Mekhedov S.L., Puigbo P., Smirnov S., Wolf Y.I., Rigden D.J.. ( 2012;). Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 14: 2870–2890 [CrossRef] [PubMed].
    [Google Scholar]
  15. Ge Y., Wu J., Xiao J., Yu J.. ( 2011;). Exploration of the binding mode of α/β-type small acid soluble proteins (SASPs) with DNA. J Mol Model 17: 3183–3193 [CrossRef] [PubMed].
    [Google Scholar]
  16. Girbal L., von Abendroth G., Winkler M., Benton P.M., Meynial-Salles I., Croux C., Peters J.W., Happe T., Soucaille P.. ( 2005;). Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities. Appl Environ Microbiol 71: 2777–2781 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hackett R.H., Setlow P.. ( 1983;). Enzymatic activity of precursors of Bacillus megaterium spore protease. J Bacteriol 153: 375–378 [PubMed].
    [Google Scholar]
  18. Hayes C.S., Setlow P.. ( 2001;). An α/β-type, small, acid-soluble spore protein which has very high affinity for DNA prevents outgrowth of Bacillus subtilis spores. J Bacteriol 183: 2662–2666 [CrossRef] [PubMed].
    [Google Scholar]
  19. Holmgren A.. ( 1995;). Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure 3: 239–243 [CrossRef] [PubMed].
    [Google Scholar]
  20. Illades-Aguiar B., Setlow P.. ( 1994;). Autoprocessing of the protease that degrades small, acid-soluble proteins of spores of Bacillus species is triggered by low pH, dehydration, and dipicolinic acid. J Bacteriol 176: 7032–7037 [PubMed].
    [Google Scholar]
  21. Janssen H., Grimmler C., Ehrenreich A., Bahl H., Fischer R.J.. ( 2012;). A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum – solvent stress caused by a transient n-butanol pulse. J Biotechnol 161: 354–365 [CrossRef] [PubMed].
    [Google Scholar]
  22. Johnson W.C., Tipper D.J.. ( 1981;). Acid-soluble spore proteins of Bacillus subtilis. J Bacteriol 146: 972–982 [PubMed].
    [Google Scholar]
  23. Jones S.W.. ( 2011;). Elucidating the transcriptional regulation of sporulation in Clostridium acetobutylicum PhD thesis Northwestern University;.
    [Google Scholar]
  24. Jones S.W., Paredes C.J., Tracy B., Cheng N., Sillers R., Senger R.S., Papoutsakis E.T.. ( 2008;). The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 9: R114 [CrossRef] [PubMed].
    [Google Scholar]
  25. Keijser B.J., Ter Beek A., Rauwerda H., Schuren F., Montijn R., van der Spek H., Brul S.. ( 2007;). Analysis of temporal gene expression during Bacillus subtilis spore germination and outgrowth. J Bacteriol 189: 3624–3634 [CrossRef] [PubMed].
    [Google Scholar]
  26. Lee K.S., Bumbaca D., Kosman J., Setlow P., Jedrzejas M.J.. ( 2008;). Structure of a protein-DNA complex essential for DNA protection in spores of Bacillus species. Proc Natl Acad Sci U S A 105: 2806–2811 [CrossRef] [PubMed].
    [Google Scholar]
  27. Li J., McClane B.A.. ( 2008;). A novel small acid soluble protein variant is important for spore resistance of most Clostridium perfringens food poisoning isolates. PLoS Pathog 4: e1000056 [CrossRef] [PubMed].
    [Google Scholar]
  28. Li J., Paredes-Sabja D., Sarker M.R., McClane B.A.. ( 2009;). Further characterization of Clostridium perfringens small acid soluble protein-4 (Ssp4) properties and expression. PLoS One 4: e6249 [CrossRef] [PubMed].
    [Google Scholar]
  29. Lütke-Eversloh T., Bahl H.. ( 2011;). Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22: 634–647 [CrossRef] [PubMed].
    [Google Scholar]
  30. Nölling J., Breton G., Omelchenko M.V., Makarova K.S., Zeng Q., Gibson R., Lee H.M., Dubois J., Qiu D., other authors. ( 2001;). Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183: 4823–4838 [CrossRef] [PubMed].
    [Google Scholar]
  31. Paredes C.J., Rigoutsos I., Papoutsakis E.T.. ( 2004;). Transcriptional organization of the Clostridium acetobutylicum genome. Nucleic Acids Res 32: 1973–1981 [CrossRef] [PubMed].
    [Google Scholar]
  32. Pedersen L.B., Nessi C., Setlow P.. ( 1997;). Most of the propeptide is dispensable for stability and autoprocessing of the zymogen of the germination protease of spores of Bacillus species. J Bacteriol 179: 1824–1827 [PubMed].
    [Google Scholar]
  33. Ponnuraj K., Rowland S., Nessi C., Setlow P., Jedrzejas M.J.. ( 2000;). Crystal structure of a novel germination protease from spores of Bacillus megaterium: structural arrangement and zymogen activation. J Mol Biol 300: 1–10 [CrossRef] [PubMed].
    [Google Scholar]
  34. Postemsky C.J., Dignam S.S., Setlow P.. ( 1978;). Isolation and characterization of Bacillus megaterium mutants containing decreased levels of spore protease. J Bacteriol 135: 841–850 [PubMed].
    [Google Scholar]
  35. Qi Y., Grishin N.V.. ( 2005;). Structural classification of thioredoxin-like fold proteins. Proteins 58: 376–388 [CrossRef] [PubMed].
    [Google Scholar]
  36. Raju D., Waters M., Setlow P., Sarker M.R.. ( 2006;). Investigating the role of small, acid-soluble spore proteins (SASPs) in the resistance of Clostridium perfringens spores to heat. BMC Microbiol 6: 50 [CrossRef] [PubMed].
    [Google Scholar]
  37. Raju D., Setlow P., Sarker M.R.. ( 2007;). Antisense-RNA-mediated decreased synthesis of small, acid-soluble spore proteins leads to decreased resistance of Clostridium perfringens spores to moist heat and UV radiation. Appl Environ Microbiol 73: 2048–2053 [CrossRef] [PubMed].
    [Google Scholar]
  38. Sambrook J., Russell D.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  39. Sanchez-Salas J.L., Setlow P.. ( 1993;). Proteolytic processing of the protease which initiates degradation of small, acid-soluble proteins during germination of Bacillus subtilis spores. J Bacteriol 175: 2568–2577 [PubMed].
    [Google Scholar]
  40. Sanchez-Salas J.L., Santiago-Lara M.L., Setlow B., Sussman M.D., Setlow P.. ( 1992;). Properties of Bacillus megaterium and Bacillus subtilis mutants which lack the protease that degrades small, acid-soluble proteins during spore germination. J Bacteriol 174: 807–814 [PubMed].
    [Google Scholar]
  41. Setlow P.. ( 1975a;). Identification and localization of the major proteins degraded during germination of Bacillus megaterium spores. J Biol Chem 250: 8159–8167 [PubMed].
    [Google Scholar]
  42. Setlow P.. ( 1975b;). Purification and properties of some unique low molecular weight basic proteins degraded during germination of Bacillus megaterium spores. J Biol Chem 250: 8168–8173 [PubMed].
    [Google Scholar]
  43. Setlow P.. ( 1976;). Purification and properties of a specific proteolytic enzyme present in spores of Bacillus megaterium. J Biol Chem 251: 7853–7862 [PubMed].
    [Google Scholar]
  44. Setlow P.. ( 1978;). Purification and characterization of additional low-molecular-weight basic proteins degraded during germination of Bacillus megaterium spores. J Bacteriol 136: 331–340 [PubMed].
    [Google Scholar]
  45. Setlow P.. ( 1988;). Small, acid-soluble spore proteins of Bacillus species: structure, synthesis, genetics, function, and degradation. Annu Rev Microbiol 42: 319–338 [CrossRef] [PubMed].
    [Google Scholar]
  46. Setlow P.. ( 2003;). Spore germination. Curr Opin Microbiol 6: 550–556 [CrossRef] [PubMed].
    [Google Scholar]
  47. Setlow P.. ( 2007;). I will survive: DNA protection in bacterial spores. Trends Microbiol 15: 172–180 [CrossRef] [PubMed].
    [Google Scholar]
  48. Setlow B., Setlow P.. ( 1995;). Binding to DNA protects alpha/beta-type, small, acid-soluble spore proteins of Bacillus and Clostridium species against digestion by their specific protease as well as by other proteases. J Bacteriol 177: 4149–4151 [PubMed].
    [Google Scholar]
  49. Setlow P., Gerard C., Ozols J.. ( 1980;). The amino acid sequence specificity of a protease from spores of Bacillus megaterium. J Biol Chem 255: 3624–3628 [PubMed].
    [Google Scholar]
  50. Setlow B., Sun D., Setlow P.. ( 1992;). Interaction between DNA and alpha/beta-type small, acid-soluble spore proteins: a new class of DNA-binding protein. J Bacteriol 174: 2312–2322 [PubMed].
    [Google Scholar]
  51. Steil L., Serrano M., Henriques A.O., Völker U.. ( 2005;). Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology 151: 399–420 [CrossRef] [PubMed].
    [Google Scholar]
  52. Stragier P., Losick R.. ( 1996;). Molecular genetics of sporulation in Bacillus subtilis. Annu Rev Genet 30: 297–341 [CrossRef] [PubMed].
    [Google Scholar]
  53. Sussman M.D., Setlow P.. ( 1991;). Cloning, nucleotide sequence, and regulation of the Bacillus subtilis gpr gene, which codes for the protease that initiates degradation of small, acid-soluble proteins during spore germination. J Bacteriol 173: 291–300 [PubMed].
    [Google Scholar]
  54. Tavares M.B., Souza R.D., Luiz W.B., Cavalcante R.C.M., Casaroli C., Martins E.G., Ferreira R.C., Ferreira L.C.. ( 2013;). Bacillus subtilis endospores at high purity and recovery yields: optimization of growth conditions and purification method. Curr Microbiol 66: 279–285 [CrossRef] [PubMed].
    [Google Scholar]
  55. Tomas C.A., Alsaker K.V., Bonarius H.P., Hendriksen W.T., Yang H., Beamish J.A., Paredes C.J., Papoutsakis E.T.. ( 2003;). DNA array-based transcriptional analysis of asporogenous, nonsolventogenic Clostridium acetobutylicum strains SKO1 and M5. J Bacteriol 185: 4539–4547 [CrossRef] [PubMed].
    [Google Scholar]
  56. Traag B.A., Pugliese A., Setlow B., Setlow P., Losick R.. ( 2013;). A conserved ClpP-like protease involved in spore outgrowth in Bacillus subtilis. Mol Microbiol 90: 160–166 [CrossRef] [PubMed].
    [Google Scholar]
  57. Tracy B.P., Jones S.W., Papoutsakis E.T.. ( 2011;). Inactivation of σE and σG in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis. J Bacteriol 193: 1414–1426 [CrossRef] [PubMed].
    [Google Scholar]
  58. Voigt C., Bahl H., Fischer R.J.. ( 2014;). Identification of PTSFru as the major fructose uptake system of Clostridium acetobutylicum. Appl Microbiol Biotechnol 98: 7161–7172 [CrossRef] [PubMed].
    [Google Scholar]
  59. Vyas J., Cox J., Setlow B., Coleman W.H., Setlow P.. ( 2011;). Extremely variable conservation of γ-type small, acid-soluble proteins from spores of some species in the bacterial order Bacillales. J Bacteriol 193: 1884–1892 [CrossRef] [PubMed].
    [Google Scholar]
  60. Wang S.T., Setlow B., Conlon E.M., Lyon J.L., Imamura D., Sato T., Setlow P., Losick R., Eichenberger P.. ( 2006;). The forespore line of gene expression in Bacillus subtilis. J Mol Biol 358: 16–37 [CrossRef] [PubMed].
    [Google Scholar]
  61. Wietzke M., Bahl H.. ( 2012;). The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum. Appl Microbiol Biotechnol 96: 749–761 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000162
Loading
/content/journal/micro/10.1099/mic.0.000162
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error