1887

Abstract

In many organisms there is a balance between carbon and nitrogen metabolism. These observations extend to the nitrogen-fixing, nonsulfur purple bacteria, which have the classic family of P(II) regulators that coordinate signals of carbon and nitrogen status to regulate nitrogen metabolism. Curiously, these organisms also possess a reverse mechanism to regulate carbon metabolism based on cellular nitrogen status. In this work, studies in firmly established that the activity of the enzyme that catalyses nitrogen fixation, nitrogenase, induces a signal that leads to repression of genes encoding enzymes of the Calvin–Benson–Bassham (CBB) CO fixation pathway. Additionally, genetic and metabolomic experiments revealed that NADH-activated phosphoribulokinase is an intermediate in the signalling pathway. Thus, nitrogenase activity appears to be linked to gene repression through phosphoribulokinase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000160
2015-11-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2184.html?itemId=/content/journal/micro/10.1099/mic.0.000160&mimeType=html&fmt=ahah

References

  1. Biegel E., Schmidt S., González J.M., Müller V.. ( 2011;). Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 68: 613–634 [CrossRef] [PubMed].
    [Google Scholar]
  2. Dangel A.W., Tabita F.R.. ( 2009;). Protein-protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides. Mol Microbiol 71: 717–729 [CrossRef] [PubMed].
    [Google Scholar]
  3. Dangel A.W., Gibson J.L., Janssen A.P., Tabita F.R.. ( 2005;). Residues that influence in vivo and in vitro CbbR function in Rhodobacter sphaeroides and identification of a specific region critical for co-inducer recognition. Mol Microbiol 57: 1397–1414 [CrossRef] [PubMed].
    [Google Scholar]
  4. Dixon R., Kahn D.. ( 2004;). Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2: 621–631 [CrossRef] [PubMed].
    [Google Scholar]
  5. Doucette C.D., Schwab D.J., Wingreen N.S., Rabinowitz J.D.. ( 2011;). α-Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat Chem Biol 7: 894–901 [CrossRef] [PubMed].
    [Google Scholar]
  6. Dubbs J.M., Tabita F.R.. ( 1998;). Two functionally distinct regions upstream of the cbbI operon of Rhodobacter sphaeroides regulate gene expression. J Bacteriol 180: 4903–4911 [PubMed].
    [Google Scholar]
  7. Dubbs J.M., Tabita F.R.. ( 2003;). Interactions of the cbbII promoter-operator region with CbbR and RegA (PrrA) regulators indicate distinct mechanisms to control expression of the two cbb operons of Rhodobacter sphaeroides. J Biol Chem 278: 16443–16450 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dubbs J.M., Tabita F.R.. ( 2004;). Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. FEMS Microbiol Rev 28: 353–376 [CrossRef] [PubMed].
    [Google Scholar]
  9. Dubbs J.M., Bird T.H., Bauer C.E., Tabita F.R.. ( 2000;). Interaction of CbbR and RegA* transcription regulators with the Rhodobacter sphaeroides cbbI Promoter-operator region. J Biol Chem 275: 19224–19230 [CrossRef] [PubMed].
    [Google Scholar]
  10. Edgren T., Nordlund S.. ( 2004;). The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J Bacteriol 186: 2052–2060 [CrossRef] [PubMed].
    [Google Scholar]
  11. Farmer R.M., Laguna R., Panescu J., McCoy A., Logsdon B., Zianni M., Moskvin O.V., Gomelsky M., Tabita F.R.. ( 2014;). Altered residues in key proteins influence the expression and activity of the nitrogenase complex in an adaptive CO2 fixation-deficient mutant strain of Rhodobacter sphaeroides. Microbiology 160: 198–208 [CrossRef] [PubMed].
    [Google Scholar]
  12. Forchhammer K.. ( 2007;). Glutamine signalling in bacteria. Front Biosci 12: 358–370 [CrossRef] [PubMed].
    [Google Scholar]
  13. Gibson J.L., Tabita F.R.. ( 1987;). Organization of phosphoribulokinase and ribulose bisphosphate carboxylase/oxygenase genes in Rhodopseudomonas (Rhodobacter) sphaeroides. J Bacteriol 169: 3685–3690 [PubMed].
    [Google Scholar]
  14. Gibson J.L., Tabita F.R.. ( 1993;). Nucleotide sequence and functional analysis of cbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides. J Bacteriol 175: 5778–5784 [PubMed].
    [Google Scholar]
  15. Gibson J.L., Dubbs J.M., Tabita F.R.. ( 2002;). Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth. J Bacteriol 184: 6654–6664 [CrossRef] [PubMed].
    [Google Scholar]
  16. Haaker H., de Kok A., Veeger C.. ( 1974;). Regulation of dinitrogen fixation in intact Azotobacter vinelandii. Biochim Biophys Acta 357: 344–357 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hillmer P., Gest H.. ( 1977;). H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J Bacteriol 129: 732–739 [PubMed].
    [Google Scholar]
  18. Hoffman B.M., Lukoyanov D., Dean D.R., Seefeldt L.C.. ( 2013;). Nitrogenase: a draft mechanism. Acc Chem Res 46: 587–595 [CrossRef] [PubMed].
    [Google Scholar]
  19. Joshi H.M., Tabita F.R.. ( 1996;). A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Proc Natl Acad Sci U S A 93: 14515–14520 [CrossRef] [PubMed].
    [Google Scholar]
  20. Joshi G.S., Zianni M., Bobst C.E., Tabita F.R.. ( 2012;). Further unraveling the regulatory twist by elucidating metabolic coinducer-mediated CbbR-cbbI promoter interactions in Rhodopseudomonas palustris CGA010. J Bacteriol 194: 1350–1360 [CrossRef] [PubMed].
    [Google Scholar]
  21. Jouanneau Y., Tabita F.R.. ( 1986;). Independent regulation of synthesis of form I and form II ribulose bisphosphate carboxylase-oxygenase in Rhodopseudomonas sphaeroides. J Bacteriol 165: 620–624 [PubMed].
    [Google Scholar]
  22. Kobayashi D., Tamoi M., Iwaki T., Shigeoka S., Wadano A.. ( 2003;). Molecular characterization and redox regulation of phosphoribulokinase from the cyanobacterium Synechococcus sp. PCC 7942. Plant Cell Physiol 44: 269–276 [CrossRef] [PubMed].
    [Google Scholar]
  23. Laguna R., Tabita F.R., Alber B.E.. ( 2011;). Acetate-dependent photoheterotrophic growth and the differential requirement for the Calvin-Benson-Bassham reductive pentose phosphate cycle in Rhodobacter sphaeroides and Rhodopseudomonas palustris. Arch Microbiol 193: 151–154 [CrossRef] [PubMed].
    [Google Scholar]
  24. Ludden P.W.. ( 1991;). Energetics of and sources of energy for biological nitrogen fixation. . In Current Topics in Bioenergetics, pp. 369–390 vol. 16. San Diego, CA: Academic Press; [CrossRef].
    [Google Scholar]
  25. Masepohl B., Kranz R.G.. ( 2009;). Regulation of nitrogen fixation. . In The Purple Phototrophic Bacteria, 23rd edn.., pp. 759–775. Edited by Hunter C. N., Daldal F., Thurnauer M. C., Beatty J. T.. Dordrecht: Springer; [CrossRef].
    [Google Scholar]
  26. McEwan A.G.. ( 1994;). Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. Antonie van Leeuwenhoek 66: 151–164 [CrossRef] [PubMed].
    [Google Scholar]
  27. McKinlay J.B., Harwood C.S.. ( 2010;). Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci U S A 107: 11669–11675 [CrossRef] [PubMed].
    [Google Scholar]
  28. Miziorko H.M.. ( 2000;). Phosphoribulokinase: current perspectives on the structure/function basis for regulation and catalysis. Adv Enzymol Relat Areas Mol Biol 74: 95–127 [PubMed].
    [Google Scholar]
  29. Ninfa A.J.. ( 2007;). Regulation of carbon and nitrogen metabolism: adding regulation of ion channels and another second messenger to the mix. Proc Natl Acad Sci U S A 104: 4243–4244 [CrossRef] [PubMed].
    [Google Scholar]
  30. Nordlund S., Hoglund L.. ( 1986;). Studies of the adenylate and pyridine nucleotide pools during nitrogenase ‘switch-off’ in Rhodospirillum rubrum. Plant Soil 90: 203–209 [CrossRef].
    [Google Scholar]
  31. Norén A., Nordlund S.. ( 1994;). Changes in the NAD(P)H concentration caused by addition of nitrogenase ‘switch-off’ effectors in Rhodospirillum rubrum G-9, as measured by fluorescence. FEBS Lett 356: 43–45 [CrossRef] [PubMed].
    [Google Scholar]
  32. Novak J.S., Tabita F.R.. ( 1999;). Molecular approaches to probe differential NADH activation of phosphoribulokinase isozymes from Rhodobacter sphaeroides. Arch Biochem Biophys 363: 273–282 [CrossRef] [PubMed].
    [Google Scholar]
  33. Paschen A., Drepper T., Masepohl B., Klipp W.. ( 2001;). Rhodobacter capsulatus nifA mutants mediating nif gene expression in the presence of ammonium. FEMS Microbiol Lett 200: 207–213 [CrossRef] [PubMed].
    [Google Scholar]
  34. Rey F.E., Heiniger E.K., Harwood C.S.. ( 2007;). Redirection of metabolism for biological hydrogen production. Appl Environ Microbiol 73: 1665–1671 [CrossRef] [PubMed].
    [Google Scholar]
  35. Rindt K.P., Ohmann E.. ( 1969;). NADH and AMP as allosteric effectors of ribulose-5-phosphate kinase in Rhodopseudomonas spheroides. Biochem Biophys Res Commun 36: 357–364 [CrossRef] [PubMed].
    [Google Scholar]
  36. Schell M.A.. ( 1993;). Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47: 597–626 [CrossRef] [PubMed].
    [Google Scholar]
  37. Schneider K., Asao M., Carter M.S., Alber B.E.. ( 2012;). Rhodobacter sphaeroides uses a reductive route via propionyl coenzyme A to assimilate 3-hydroxypropionate. J Bacteriol 194: 225–232 [CrossRef] [PubMed].
    [Google Scholar]
  38. Selao T.T., Nordlund S., Norén A.. ( 2008;). Comparative proteomic studies in Rhodospirillum rubrum grown under different nitrogen conditions. J Proteome Res 7: 3267–3275 [CrossRef] [PubMed].
    [Google Scholar]
  39. Simon R., Priefer U., Pühler A.. ( 1983;). A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1: 784–791 [CrossRef].
    [Google Scholar]
  40. Smith S.A., Tabita F.R.. ( 2002;). Up-regulated expression of the cbb(I) and cbb(II) operons during photoheterotrophic growth of a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion mutant of Rhodobacter sphaeroides. J Bacteriol 184: 6721–6724 [CrossRef] [PubMed].
    [Google Scholar]
  41. Tabita F.R.. ( 1988;). Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Rev 52: 155–189 [PubMed].
    [Google Scholar]
  42. Tabita F.R.. ( 1995;). The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. . In Anoxygenic Photosynthetic Bacteria. Edited by Blankenship R. E., Madigan M. T., Bauer C. E.. Dordrecht: Kluwer Academic Publishers;.
    [Google Scholar]
  43. Tamoi M., Murakami A., Takeda T., Shigeoka S.. ( 1998;). Lack of light/dark regulation of enzymes involved in the photosynthetic carbon reduction cycle in cyanobacteria, Synechococcus PCC 7942 and Synechocystis PCC 6803. Biosci Biotechnol Biochem 62: 374–376 [CrossRef].
    [Google Scholar]
  44. Tamoi M., Miyazaki T., Fukamizo T., Shigeoka S.. ( 2005;). The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant J 42: 504–513 [CrossRef] [PubMed].
    [Google Scholar]
  45. Tao Y., Liu D., Yan X., Zhou Z., Lee J.K., Yang C.. ( 2012;). Network identification and flux quantification of glucose metabolism in Rhodobacter sphaeroides under photoheterotrophic H(2)-producing conditions. J Bacteriol 194: 274–283 [CrossRef] [PubMed].
    [Google Scholar]
  46. Tichi M.A., Tabita F.R.. ( 2000;). Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway. Arch Microbiol 174: 322–333 [CrossRef] [PubMed].
    [Google Scholar]
  47. Tichi M.A., Tabita F.R.. ( 2001;). Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism. J Bacteriol 183: 6344–6354 [CrossRef] [PubMed].
    [Google Scholar]
  48. van Niel C.B.. ( 1944;). The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev 8: 1–118 [PubMed].
    [Google Scholar]
  49. VerBerkmoes N.C., Shah M.B., Lankford P.K., Pelletier D.A., Strader M.B., Tabb D.L., McDonald W.H., Barton J.W., Hurst G.B., other authors. ( 2006;). Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic states. J Proteome Res 5: 287–298 [CrossRef] [PubMed].
    [Google Scholar]
  50. Wang D., Zhang Y., Pohlmann E.L., Li J., Roberts G.P.. ( 2011;). The poor growth of Rhodospirillum rubrum mutants lacking RubisCO is due to the accumulation of ribulose-1,5-bisphosphate. J Bacteriol 193: 3293–3303 [CrossRef] [PubMed].
    [Google Scholar]
  51. Wu J., Bauer C.E.. ( 2008;). RegB/RegA, a global redox-responding two-component system. Adv Exp Med Biol 631: 131–148 [CrossRef] [PubMed].
    [Google Scholar]
  52. Wu J., Bauer C.E.. ( 2010;). RegB kinase activity is controlled in part by monitoring the ratio of oxidized to reduced ubiquinones in the ubiquinone pool. MBio 1: e00272–e10 [CrossRef] [PubMed].
    [Google Scholar]
  53. Yanisch-Perron C., Vieira J., Messing J.. ( 1985;). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119 [CrossRef][PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000160
Loading
/content/journal/micro/10.1099/mic.0.000160
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error