1887

Abstract

In many organisms there is a balance between carbon and nitrogen metabolism. These observations extend to the nitrogen-fixing, nonsulfur purple bacteria, which have the classic family of P(II) regulators that coordinate signals of carbon and nitrogen status to regulate nitrogen metabolism. Curiously, these organisms also possess a reverse mechanism to regulate carbon metabolism based on cellular nitrogen status. In this work, studies in firmly established that the activity of the enzyme that catalyses nitrogen fixation, nitrogenase, induces a signal that leads to repression of genes encoding enzymes of the Calvin–Benson–Bassham (CBB) CO fixation pathway. Additionally, genetic and metabolomic experiments revealed that NADH-activated phosphoribulokinase is an intermediate in the signalling pathway. Thus, nitrogenase activity appears to be linked to gene repression through phosphoribulokinase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000160
2015-11-01
2021-07-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2184.html?itemId=/content/journal/micro/10.1099/mic.0.000160&mimeType=html&fmt=ahah

References

  1. Biegel E., Schmidt S., González J.M., Müller V. (2011). Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotesCell Mol Life Sci 68613634 [View Article][PubMed]. [Google Scholar]
  2. Dangel A.W., Tabita F.R. (2009). Protein-protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroidesMol Microbiol 71717729 [View Article][PubMed]. [Google Scholar]
  3. Dangel A.W., Gibson J.L., Janssen A.P., Tabita F.R. (2005). Residues that influence in vivo and in vitro CbbR function in Rhodobacter sphaeroides and identification of a specific region critical for co-inducer recognitionMol Microbiol 5713971414 [View Article][PubMed]. [Google Scholar]
  4. Dixon R., Kahn D. (2004). Genetic regulation of biological nitrogen fixationNat Rev Microbiol 2621631 [View Article][PubMed]. [Google Scholar]
  5. Doucette C.D., Schwab D.J., Wingreen N.S., Rabinowitz J.D. (2011). α-Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibitionNat Chem Biol 7894901 [View Article][PubMed]. [Google Scholar]
  6. Dubbs J.M., Tabita F.R. (1998). Two functionally distinct regions upstream of the cbbI operon of Rhodobacter sphaeroides regulate gene expressionJ Bacteriol 18049034911[PubMed]. [Google Scholar]
  7. Dubbs J.M., Tabita F.R. (2003). Interactions of the cbbII promoter-operator region with CbbR and RegA (PrrA) regulators indicate distinct mechanisms to control expression of the two cbb operons of Rhodobacter sphaeroidesJ Biol Chem 2781644316450 [View Article][PubMed]. [Google Scholar]
  8. Dubbs J.M., Tabita F.R. (2004). Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generationFEMS Microbiol Rev 28353376 [View Article][PubMed]. [Google Scholar]
  9. Dubbs J.M., Bird T.H., Bauer C.E., Tabita F.R. (2000). Interaction of CbbR and RegA* transcription regulators with the Rhodobacter sphaeroides cbbI Promoter-operator regionJ Biol Chem 2751922419230 [View Article][PubMed]. [Google Scholar]
  10. Edgren T., Nordlund S. (2004). The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenaseJ Bacteriol 18620522060 [View Article][PubMed]. [Google Scholar]
  11. Farmer R.M., Laguna R., Panescu J., McCoy A., Logsdon B., Zianni M., Moskvin O.V., Gomelsky M., Tabita F.R. (2014). Altered residues in key proteins influence the expression and activity of the nitrogenase complex in an adaptive CO2 fixation-deficient mutant strain of Rhodobacter sphaeroidesMicrobiology 160198208 [View Article][PubMed]. [Google Scholar]
  12. Forchhammer K. (2007). Glutamine signalling in bacteriaFront Biosci 12358370 [View Article][PubMed]. [Google Scholar]
  13. Gibson J.L., Tabita F.R. (1987). Organization of phosphoribulokinase and ribulose bisphosphate carboxylase/oxygenase genes in Rhodopseudomonas (Rhodobacter) sphaeroidesJ Bacteriol 16936853690[PubMed]. [Google Scholar]
  14. Gibson J.L., Tabita F.R. (1993). Nucleotide sequence and functional analysis of cbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroidesJ Bacteriol 17557785784[PubMed]. [Google Scholar]
  15. Gibson J.L., Dubbs J.M., Tabita F.R. (2002). Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growthJ Bacteriol 18466546664 [View Article][PubMed]. [Google Scholar]
  16. Haaker H., de Kok A., Veeger C. (1974). Regulation of dinitrogen fixation in intact Azotobacter vinelandiiBiochim Biophys Acta 357344357 [View Article][PubMed]. [Google Scholar]
  17. Hillmer P., Gest H. (1977). H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cellsJ Bacteriol 129732739[PubMed]. [Google Scholar]
  18. Hoffman B.M., Lukoyanov D., Dean D.R., Seefeldt L.C. (2013). Nitrogenase: a draft mechanismAcc Chem Res 46587595 [View Article][PubMed]. [Google Scholar]
  19. Joshi H.M., Tabita F.R. (1996). A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixationProc Natl Acad Sci U S A 931451514520 [View Article][PubMed]. [Google Scholar]
  20. Joshi G.S., Zianni M., Bobst C.E., Tabita F.R. (2012). Further unraveling the regulatory twist by elucidating metabolic coinducer-mediated CbbR-cbbI promoter interactions in Rhodopseudomonas palustris CGA010J Bacteriol 19413501360 [View Article][PubMed]. [Google Scholar]
  21. Jouanneau Y., Tabita F.R. (1986). Independent regulation of synthesis of form I and form II ribulose bisphosphate carboxylase-oxygenase in Rhodopseudomonas sphaeroidesJ Bacteriol 165620624[PubMed]. [Google Scholar]
  22. Kobayashi D., Tamoi M., Iwaki T., Shigeoka S., Wadano A. (2003). Molecular characterization and redox regulation of phosphoribulokinase from the cyanobacterium Synechococcus sp. PCC 7942Plant Cell Physiol 44269276 [View Article][PubMed]. [Google Scholar]
  23. Laguna R., Tabita F.R., Alber B.E. (2011). Acetate-dependent photoheterotrophic growth and the differential requirement for the Calvin-Benson-Bassham reductive pentose phosphate cycle in Rhodobacter sphaeroides and Rhodopseudomonas palustrisArch Microbiol 193151154 [View Article][PubMed]. [Google Scholar]
  24. Ludden P.W. (1991). Energetics of and sources of energy for biological nitrogen fixation. In Current Topics in Bioenergetics, pp. 369390vol. 16. San Diego, CAAcademic Press [View Article]. [Google Scholar]
  25. Masepohl B., Kranz R.G. (2009). Regulation of nitrogen fixation. In The Purple Phototrophic Bacteria23rd edn., pp. 759775. Edited by Hunter C. N., Daldal F., Thurnauer M. C., Beatty J. T.DordrechtSpringer [View Article]. [Google Scholar]
  26. McEwan A.G. (1994). Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteriaAntonie van Leeuwenhoek 66151164 [View Article][PubMed]. [Google Scholar]
  27. McKinlay J.B., Harwood C.S. (2010). Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteriaProc Natl Acad Sci U S A 1071166911675 [View Article][PubMed]. [Google Scholar]
  28. Miziorko H.M. (2000). Phosphoribulokinase: current perspectives on the structure/function basis for regulation and catalysisAdv Enzymol Relat Areas Mol Biol 7495127[PubMed]. [Google Scholar]
  29. Ninfa A.J. (2007). Regulation of carbon and nitrogen metabolism: adding regulation of ion channels and another second messenger to the mixProc Natl Acad Sci U S A 10442434244 [View Article][PubMed]. [Google Scholar]
  30. Nordlund S., Hoglund L. (1986). Studies of the adenylate and pyridine nucleotide pools during nitrogenase ‘switch-off’ in Rhodospirillum rubrumPlant Soil 90203209 [View Article]. [Google Scholar]
  31. Norén A., Nordlund S. (1994). Changes in the NAD(P)H concentration caused by addition of nitrogenase ‘switch-off’ effectors in Rhodospirillum rubrum G-9, as measured by fluorescenceFEBS Lett 3564345 [View Article][PubMed]. [Google Scholar]
  32. Novak J.S., Tabita F.R. (1999). Molecular approaches to probe differential NADH activation of phosphoribulokinase isozymes from Rhodobacter sphaeroidesArch Biochem Biophys 363273282 [View Article][PubMed]. [Google Scholar]
  33. Paschen A., Drepper T., Masepohl B., Klipp W. (2001). Rhodobacter capsulatus nifA mutants mediating nif gene expression in the presence of ammoniumFEMS Microbiol Lett 200207213 [View Article][PubMed]. [Google Scholar]
  34. Rey F.E., Heiniger E.K., Harwood C.S. (2007). Redirection of metabolism for biological hydrogen productionAppl Environ Microbiol 7316651671 [View Article][PubMed]. [Google Scholar]
  35. Rindt K.P., Ohmann E. (1969). NADH and AMP as allosteric effectors of ribulose-5-phosphate kinase in Rhodopseudomonas spheroidesBiochem Biophys Res Commun 36357364 [View Article][PubMed]. [Google Scholar]
  36. Schell M.A. (1993). Molecular biology of the LysR family of transcriptional regulatorsAnnu Rev Microbiol 47597626 [View Article][PubMed]. [Google Scholar]
  37. Schneider K., Asao M., Carter M.S., Alber B.E. (2012). Rhodobacter sphaeroides uses a reductive route via propionyl coenzyme A to assimilate 3-hydroxypropionateJ Bacteriol 194225232 [View Article][PubMed]. [Google Scholar]
  38. Selao T.T., Nordlund S., Norén A. (2008). Comparative proteomic studies in Rhodospirillum rubrum grown under different nitrogen conditionsJ Proteome Res 732673275 [View Article][PubMed]. [Google Scholar]
  39. Simon R., Priefer U., Pühler A. (1983). A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram negative bacteriaNat Biotechnol 1784791 [View Article]. [Google Scholar]
  40. Smith S.A., Tabita F.R. (2002). Up-regulated expression of the cbb(I) and cbb(II) operons during photoheterotrophic growth of a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion mutant of Rhodobacter sphaeroidesJ Bacteriol 18467216724 [View Article][PubMed]. [Google Scholar]
  41. Tabita F.R. (1988). Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganismsMicrobiol Rev 52155189[PubMed]. [Google Scholar]
  42. Tabita F.R. (1995). The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In Anoxygenic Photosynthetic Bacteria. Edited by Blankenship R. E., Madigan M. T., Bauer C. E.DordrechtKluwer Academic Publishers. [Google Scholar]
  43. Tamoi M., Murakami A., Takeda T., Shigeoka S. (1998). Lack of light/dark regulation of enzymes involved in the photosynthetic carbon reduction cycle in cyanobacteria, Synechococcus PCC 7942 and Synechocystis PCC 6803Biosci Biotechnol Biochem 62374376 [View Article]. [Google Scholar]
  44. Tamoi M., Miyazaki T., Fukamizo T., Shigeoka S. (2005). The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditionsPlant J 42504513 [View Article][PubMed]. [Google Scholar]
  45. Tao Y., Liu D., Yan X., Zhou Z., Lee J.K., Yang C. (2012). Network identification and flux quantification of glucose metabolism in Rhodobacter sphaeroides under photoheterotrophic H(2)-producing conditionsJ Bacteriol 194274283 [View Article][PubMed]. [Google Scholar]
  46. Tichi M.A., Tabita F.R. (2000). Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathwayArch Microbiol 174322333 [View Article][PubMed]. [Google Scholar]
  47. Tichi M.A., Tabita F.R. (2001). Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolismJ Bacteriol 18363446354 [View Article][PubMed]. [Google Scholar]
  48. van Niel C.B. (1944). The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteriaBacteriol Rev 81118[PubMed]. [Google Scholar]
  49. VerBerkmoes N.C., Shah M.B., Lankford P.K., Pelletier D.A., Strader M.B., Tabb D.L., McDonald W.H., Barton J.W., Hurst G.B., other authors. (2006). Determination and comparison of the baseline proteomes of the versatile microbe Rhodopseudomonas palustris under its major metabolic statesJ Proteome Res 5287298 [View Article][PubMed]. [Google Scholar]
  50. Wang D., Zhang Y., Pohlmann E.L., Li J., Roberts G.P. (2011). The poor growth of Rhodospirillum rubrum mutants lacking RubisCO is due to the accumulation of ribulose-1,5-bisphosphateJ Bacteriol 19332933303 [View Article][PubMed]. [Google Scholar]
  51. Wu J., Bauer C.E. (2008). RegB/RegA, a global redox-responding two-component systemAdv Exp Med Biol 631131148 [View Article][PubMed]. [Google Scholar]
  52. Wu J., Bauer C.E. (2010). RegB kinase activity is controlled in part by monitoring the ratio of oxidized to reduced ubiquinones in the ubiquinone poolMBio 1e00272e10 [View Article][PubMed]. [Google Scholar]
  53. Yanisch-Perron C., Vieira J., Messing J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectorsGene 33103119 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000160
Loading
/content/journal/micro/10.1099/mic.0.000160
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error