1887

Abstract

The CsrA/RsmA family of post-transcriptional regulators in bacteria is involved in regulating many cellular processes, including pathogenesis. Using a bioinformatics approach, we identified an RsmA binding motif, A(N)GGA, in the Shine–Dalgarno regions of 901 genes. Among these genes with the predicted RsmA binding motif, 358 were regulated by RsmA according to our previously published gene expression profiling analysis (WT negative mutant; Kõiv , 2013 ). A small subset of the predicted targets known to be important as virulence factors was selected for experimental validation. RNA footprint analyses demonstrated that RsmA binds specifically to the ANGGA motif in the 5′UTR sequences of , , , and . RsmA-dependent regulation of these five genes was examined using plasmid-borne translational and transcriptional fusions with a reporter gene. They were all affected negatively by RsmA. However, we demonstrated that whereas the overall effect of RsmA on and was determined on both the translational and transcriptional level, expression of pectinolytic enzyme genes ( and ) was affected mainly on the level of transcription in tested conditions. In summary, these data indicate that RsmA controls virulence by integration of its regulatory activities at various levels.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000159
2015-11-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/11/2079.html?itemId=/content/journal/micro/10.1099/mic.0.000159&mimeType=html&fmt=ahah

References

  1. Andresen L., Sala E., Kõiv V., Mäe A.. ( 2010;). A role for the Rcs phosphorelay in regulating expression of plant cell wall degrading enzymes in Pectobacterium carotovorum subsp. carotovorum. Microbiology 156: 1323–1334 [CrossRef] [PubMed].
    [Google Scholar]
  2. Babitzke P., Baker C.S., Romeo T.. ( 2009;). Regulation of translation initiation by RNA binding proteins. Annu Rev Microbiol 63: 27–44 [CrossRef] [PubMed].
    [Google Scholar]
  3. Baker C.S., Eöry L.A., Yakhnin H., Mercante J., Romeo T., Babitzke P.. ( 2007;). CsrA inhibits translation initiation of Escherichia coli hfq by binding to a single site overlapping the Shine-Dalgarno sequence. J Bacteriol 189: 5472–5481 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bateman A., Coin L., Durbin R., Finn R.D., Hollich V., Griffiths-Jones S., Khanna A., Marshall M., Moxon S., other authors. ( 2004;). The Pfam protein families database. Nucleic Acids Res 32: D138–D141 [CrossRef] [PubMed].
    [Google Scholar]
  5. Blumer C., Heeb S., Pessi G., Haas D.. ( 1999;). Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci U S A 96: 14073–14078 [CrossRef] [PubMed].
    [Google Scholar]
  6. Brencic A., Lory S.. ( 2009;). Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol 72: 612–632 [CrossRef] [PubMed].
    [Google Scholar]
  7. Charkowski A., Blanco C., Condemine G., Expert D., Franza T., Hayes C., Hugouvieux-Cotte-Pattat N., López Solanilla E., Low D., other authors. ( 2012;). The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. Annu Rev Phytopathol 50: 425–449 [CrossRef] [PubMed].
    [Google Scholar]
  8. Chatterjee A., Cui Y., Liu Y., Dumenyo C.K., Chatterjee A.K.. ( 1995;). Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Appl Environ Microbiol 61: 1959–1967 [PubMed].
    [Google Scholar]
  9. Chatterjee A., Cui Y., Chakrabarty P., Chatterjee A.K.. ( 2010;). Regulation of motility in Erwinia carotovora subsp. carotovora: quorum-sensing signal controls FlhDC, the global regulator of flagellar and exoprotein genes, by modulating the production of RsmA, an RNA-binding protein. Mol Plant Microbe Interact 23: 1316–1323 [CrossRef] [PubMed].
    [Google Scholar]
  10. Chen H., Bjerknes M., Kumar R., Jay E.. ( 1994;). Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res 22: 4953–4957 [CrossRef] [PubMed].
    [Google Scholar]
  11. Davidsson P.R., Kariola T., Niemi O., Palva E.T.. ( 2013;). Pathogenicity of and plant immunity to soft rot pectobacteria. Front Plant Sci 4: 191 [CrossRef] [PubMed].
    [Google Scholar]
  12. Dubey A.K., Baker C.S., Romeo T., Babitzke P.. ( 2005;). RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. RNA 11: 1579–1587 [CrossRef] [PubMed].
    [Google Scholar]
  13. Edwards A.N., Patterson-Fortin L.M., Vakulskas C.A., Mercante J.W., Potrykus K., Vinella D., Camacho M.I., Fields J.A., Thompson S.A., other authors. ( 2011;). Circuitry linking the Csr and stringent response global regulatory systems. Mol Microbiol 80: 1561–1580 [CrossRef] [PubMed].
    [Google Scholar]
  14. Feil H., Feil W.S., Chain P., Larimer F., DiBartolo G., Copeland A., Lykidis A., Trong S., Nolan M., other authors. ( 2005;). Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A 102: 11064–11069 [CrossRef] [PubMed].
    [Google Scholar]
  15. Heikinheimo R., Flego D., Pirhonen M., Karlsson M.B., Eriksson A., Mäe A., Kõiv V., Palva E.T.. ( 1995;). Characterization of a novel pectate lyase from Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 8: 207–217 [CrossRef] [PubMed].
    [Google Scholar]
  16. Heroven A.K., Böhme K., Rohde M., Dersch P.. ( 2008;). A Csr-type regulatory system, including small non-coding RNAs, regulates the global virulence regulator RovA of Yersinia pseudotuberculosis through RovM. Mol Microbiol 68: 1179–1195 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hiard S., Marée R., Colson S., Hoskisson P.A., Titgemeyer F., van Wezel G.P., Joris B., Wehenkel L., Rigali S.. ( 2007;). PREDetector: a new tool to identify regulatory elements in bacterial genomes. Biochem Biophys Res Commun 357: 861–864 [CrossRef] [PubMed].
    [Google Scholar]
  18. Hüttenhofer A., Noller H.F.. ( 1994;). Footprinting mRNA-ribosome complexes with chemical probes. EMBO J 13: 3892–3901 [PubMed].
    [Google Scholar]
  19. Hyytiäinen H., Montesano M., Palva E.T.. ( 2001;). Global regulators ExpA (GacA) and KdgR modulate extracellular enzyme gene expression through the RsmA-rsmB system in Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 14: 931–938 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kõiv V., Andresen L., Mäe A.. ( 2010;). AepA of Pectobacterium is not involved in the regulation of extracellular plant cell wall degrading enzymes production. Mol Genet Genomics 283: 541–549 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kõiv V., Andresen L., Broberg M., Frolova J., Somervuo P., Auvinen P., Pirhonen M., Tenson T., Mäe A.. ( 2013;). Lack of RsmA-mediated control results in constant hypervirulence, cell elongation, and hyperflagellation in Pectobacterium wasabiae. PLoS One 8: e54248 [CrossRef] [PubMed].
    [Google Scholar]
  22. Koskinen J.P., Laine P., Niemi O., Nykyri J., Harjunpää H., Auvinen P., Paulin L., Pirhonen M., Palva T., Holm L.. ( 2012;). Genome sequence of Pectobacterium sp. strain SCC3193. J Bacteriol 194: 6004 [CrossRef] [PubMed].
    [Google Scholar]
  23. Lapouge K., Sineva E., Lindell M., Starke K., Baker C.S., Babitzke P., Haas D.. ( 2007;). Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens. Mol Microbiol 66: 341–356 [CrossRef] [PubMed].
    [Google Scholar]
  24. Lapouge K., Schubert M., Allain F.H., Haas D.. ( 2008;). Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67: 241–253 [CrossRef] [PubMed].
    [Google Scholar]
  25. Lapouge K., Perozzo R., Iwaszkiewicz J., Bertelli C., Zoete V., Michielin O., Scapozza L., Haas D.. ( 2013;). RNA pentaloop structures as effective targets of regulators belonging to the RsmA/CsrA protein family. RNA Biol 10: 1031–1041 [CrossRef] [PubMed].
    [Google Scholar]
  26. Liu M.Y., Gui G., Wei B., Preston J.F. III, Oakford L., Yüksel U., Giedroc D.P., Romeo T.. ( 1997;). The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem 272: 17502–17510 [CrossRef] [PubMed].
    [Google Scholar]
  27. Liu Y., Cui Y., Mukherjee A., Chatterjee A.K.. ( 1998;). Characterization of a novel RNA regulator of Erwinia carotovora ssp. carotovora that controls production of extracellular enzymes and secondary metabolites. Mol Microbiol 29: 219–234 [CrossRef] [PubMed].
    [Google Scholar]
  28. Mäe A., Heikinheimo R., Palva E.T.. ( 1995;). Structure and regulation of the Erwinia carotovora subspecies carotovora SCC3193 cellulase gene celV1 and the role of cellulase in phytopathogenicity. Mol Gen Genet 247: 17–26 [CrossRef] [PubMed].
    [Google Scholar]
  29. Marits R., Kõiv V., Laasik E., Mäe A.. ( 1999;). Isolation of an extracellular protease gene of Erwinia carotovora subsp. carotovora strain SCC3193 by transposon mutagenesis and the role of protease in phytopathogenicity. Microbiology 145: 1959–1966 [CrossRef] [PubMed].
    [Google Scholar]
  30. Martínez-Granero F., Navazo A., Barahona E., Redondo-Nieto M., Rivilla R., Martín M.. ( 2012;). The Gac-Rsm and SadB signal transduction pathways converge on AlgU to downregulate motility in Pseudomonas fluorescens. PLoS One 7: e31765 [CrossRef] [PubMed].
    [Google Scholar]
  31. Mercante J., Edwards A.N., Dubey A.K., Babitzke P., Romeo T.. ( 2009;). Molecular geometry of CsrA (RsmA) binding to RNA and its implications for regulated expression. J Mol Biol 392: 511–528 [CrossRef] [PubMed].
    [Google Scholar]
  32. Mukherjee S., Yakhnin H., Kysela D., Sokoloski J., Babitzke P., Kearns D.B.. ( 2011;). CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis. Mol Microbiol 82: 447–461 [CrossRef] [PubMed].
    [Google Scholar]
  33. Nykyri J., Mattinen L., Niemi O., Adhikari S., Kõiv V., Somervuo P., Fang X., Auvinen P., Mäe A., other authors. ( 2013;). Role and regulation of the Flp/Tad pilus in the virulence of Pectobacterium atrosepticum SCRI1043 and Pectobacterium wasabiae SCC3193. PLoS One 8: e73718 [CrossRef] [PubMed].
    [Google Scholar]
  34. Pannuri A., Yakhnin H., Vakulskas C.A., Edwards A.N., Babitzke P., Romeo T.. ( 2012;). Translational repression of NhaR, a novel pathway for multi-tier regulation of biofilm circuitry by CsrA. J Bacteriol 194: 79–89 [CrossRef] [PubMed].
    [Google Scholar]
  35. Patterson-Fortin L.M., Vakulskas C.A., Yakhnin H., Babitzke P., Romeo T.. ( 2013;). Dual posttranscriptional regulation via a cofactor-responsive mRNA leader. J Mol Biol 425: 3662–3677 [CrossRef] [PubMed].
    [Google Scholar]
  36. Pirhonen M., Heino P., Helander I., Harju P., Palva E.T.. ( 1988;). Bacteriophage T4 resistant mutants of the plant pathogen Erwinia carotovora. Microb Pathog 4: 359–367 [CrossRef] [PubMed].
    [Google Scholar]
  37. Ringquist S., Shinedling S., Barrick D., Green L., Binkley J., Stormo G.D., Gold L.. ( 1992;). Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Mol Microbiol 6: 1219–1229 [CrossRef] [PubMed].
    [Google Scholar]
  38. Romeo T., Gong M., Liu M.Y., Brun-Zinkernagel A.M.. ( 1993;). Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175: 4744–4755 [PubMed].
    [Google Scholar]
  39. Romeo T., Vakulskas C.A., Babitzke P.. ( 2013;). Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ Microbiol 15: 313–324 [CrossRef] [PubMed].
    [Google Scholar]
  40. Saarilahti H.T., Heino P., Pakkanen R., Kalkkinen N., Palva I., Palva E.T.. ( 1990;). Structural analysis of the pehA gene and characterization of its protein product, endopolygalacturonase, of Erwinia carotovora subspecies carotovora. Mol Microbiol 4: 1037–1044 [CrossRef] [PubMed].
    [Google Scholar]
  41. Schägger H.. ( 2006;). Tricine-SDS-PAGE. Nat Protoc 1: 16–22 [CrossRef] [PubMed].
    [Google Scholar]
  42. Schubert M., Lapouge K., Duss O., Oberstrass F.C., Jelesarov I., Haas D., Allain F.H.. ( 2007;). Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat Struct Mol Biol 14: 807–813 [CrossRef] [PubMed].
    [Google Scholar]
  43. Timmermans J., Van Melderen L.. ( 2010;). Post-transcriptional global regulation by CsrA in bacteria. Cell Mol Life Sci 67: 2897–2908 [CrossRef] [PubMed].
    [Google Scholar]
  44. Wang X., Dubey A.K., Suzuki K., Baker C.S., Babitzke P., Romeo T.. ( 2005;). CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 56: 1648–1663 [CrossRef] [PubMed].
    [Google Scholar]
  45. Wei B.L., Brun-Zinkernagel A.M., Simecka J.W., Prüss B.M., Babitzke P., Romeo T.. ( 2001;). Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40: 245–256 [CrossRef] [PubMed].
    [Google Scholar]
  46. Yakhnin H., Baker C.S., Berezin I., Evangelista M.A., Rassin A., Romeo T., Babitzke P.. ( 2011;). CsrA represses translation of sdiA, which encodes the N-acylhomoserine-L-lactone receptor of Escherichia coli, by binding exclusively within the coding region of sdiA mRNA. J Bacteriol 193: 6162–6170 [CrossRef] [PubMed].
    [Google Scholar]
  47. Yakhnin A.V., Baker C.S., Vakulskas C.A., Yakhnin H., Berezin I., Romeo T., Babitzke P.. ( 2013;). CsrA activates flhDC expression by protecting flhDC mRNA from RNase E-mediated cleavage. Mol Microbiol 87: 851–866 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000159
Loading
/content/journal/micro/10.1099/mic.0.000159
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error