1887

Abstract

Reversible phosphorylation of bacterial transcriptional regulators (TRs) belonging to the family of two-component systems (TCSs) is a well-established mechanism for regulating gene expression. Recent evidence points to the fact that reversible phosphorylation of bacterial TRs on other types of residue, i.e. serine, threonine, tyrosine and cysteine, is also quite common. The phosphorylation of the ester type (phospho-serine/threonine/tyrosine) is more stable than the aspartate phosphorylation of TCSs. The kinases which catalyse these phosphorylation events (Hanks-type serine/threonine protein kinases and bacterial protein tyrosine kinases) are also much more promiscuous than the TCS kinases, i.e. each of them can phosphorylate several substrate proteins. As a consequence, the dynamics and topology of the signal transduction networks depending on these kinases differ significantly from the TCSs. Here, we present an overview of different classes of bacterial TR phosphorylated and regulated by serine/threonine and tyrosine kinases. Particular attention is given to examples when serine/threonine and tyrosine kinases interact with TCSs, phosphorylating either the histidine kinases or the response regulators. We argue that these promiscuous kinases connect several signal transduction pathways and serve the role of signal integration.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000148
2015-09-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/9/1720.html?itemId=/content/journal/micro/10.1099/mic.0.000148&mimeType=html&fmt=ahah

References

  1. Aiba H., Mizuno T., Mizushima S.. 1989; Transfer of phosphoryl group between two regulatory proteins involved in osmoregulatory expression of the ompF and ompC genes in Escherichia coli. J Biol Chem264:8563–8567[PubMed]
    [Google Scholar]
  2. Alon U., Camarena L., Surette M. G., Aguera y Arcas B., Liu Y., Leibler S., Stock J. B.. 1998; Response regulator output in bacterial chemotaxis. EMBO J17:4238–4248 [CrossRef][PubMed]
    [Google Scholar]
  3. Alon U., Surette M. G., Barkai N., Leibler S.. 1999; Robustness in bacterial chemotaxis. Nature397:168–171 [CrossRef][PubMed]
    [Google Scholar]
  4. Baulard A. R., Betts J. C., Engohang-Ndong J., Quan S., McAdam R. A., Brennan P. J., Locht C., Besra G. S.. 2000; Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol Chem275:28326–28331[PubMed]
    [Google Scholar]
  5. Belcheva A., Golemi-Kotra D.. 2008; A close-up view of the VraSR two-component system. A mediator of Staphylococcus aureus response to cell wall damage. J Biol Chem283:12354–12364 [CrossRef][PubMed]
    [Google Scholar]
  6. Bobay B. G., Benson L., Naylor S., Feeney B., Clark A. C., Goshe M. B., Strauch M. A., Thompson R., Cavanagh J.. 2004; Evaluation of the DNA binding tendencies of the transition state regulator AbrB. Biochemistry43:16106–16118 [CrossRef][PubMed]
    [Google Scholar]
  7. Canova M. J., Veyron-Churlet R., Zanella-Cleon I., Cohen-Gonsaud M., Cozzone A. J., Becchi M., Kremer L., Molle V.. 2008; The Mycobacterium tuberculosis serine/threonine kinase PknL phosphorylates Rv2175c: mass spectrometric profiling of the activation loop phosphorylation sites and their role in the recruitment of Rv2175c. Proteomics8:521–533 [CrossRef][PubMed]
    [Google Scholar]
  8. Canova M. J., Baronian G., Brelle S., Cohen-Gonsaud M., Bischoff M., Molle V.. 2014; A novel mode of regulation of the Staphylococcus aureus vancomycin-resistance-associated response regulator VraR mediated by Stk1 protein phosphorylation. Biochem Biophys Res Commun447:165–171 [CrossRef][PubMed]
    [Google Scholar]
  9. Chao J. D., Papavinasasundaram K. G., Zheng X., Chávez-Steenbock A., Wang X., Lee G. Q., Av-Gay Y.. 2010; Convergence of Ser/Thr and two-component signaling to coordinate expression of the dormancy regulon in Mycobacterium tuberculosis. J Biol Chem285:29239–29246 [CrossRef][PubMed]
    [Google Scholar]
  10. Cheung A. L., Nishina K. A., Trotonda M. P., Tamber S.. 2008; The SarA protein family of Staphylococcus aureus. Int J Biochem Cell Biol40:355–361 [CrossRef][PubMed]
    [Google Scholar]
  11. Chien Y., Manna A. C., Projan S. J., Cheung A. L.. 1999; SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation. J Biol Chem274:37169–37176 [CrossRef][PubMed]
    [Google Scholar]
  12. Chumsakul O., Takahashi H., Oshima T., Hishimoto T., Kanaya S., Ogasawara N., Ishikawa S.. 2011; Genome-wide binding profiles of the Bacillus subtilis transition state regulator AbrB and its homolog Abh reveals their interactive role in transcriptional regulation. Nucleic Acids Res39:414–428 [CrossRef][PubMed]
    [Google Scholar]
  13. Cohen-Gonsaud M., Barthe P., Canova M. J., Stagier-Simon C., Kremer L., Roumestand C., Molle V.. 2009; The Mycobacterium tuberculosis Ser/Thr kinase substrate Rv2175c is a DNA-binding protein regulated by phosphorylation. J Biol Chem284:19290–19300 [CrossRef][PubMed]
    [Google Scholar]
  14. Dardel F., Panvert M., Blanquet S., Fayat G.. 1991; Locations of the metG and mrp genes on the physical map of Escherichia coli. J Bacteriol173:3273[PubMed]
    [Google Scholar]
  15. DeBarber A. E., Mdluli K., Bosman M., Bekker L. G., Barry C. E. III. 2000; Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci U S A97:9677–9682 [CrossRef][PubMed]
    [Google Scholar]
  16. Derouiche A., Bidnenko V., Grenha R., Pigonneau N., Ventroux M., Franz-Wachtel M., Nessler S., Noirot-Gros M. F., Mijakovic I.. 2013; Interaction of bacterial fatty-acid-displaced regulators with DNA is interrupted by tyrosine phosphorylation in the helix-turn-helix domain. Nucleic Acids Res41:9371–9381 [CrossRef][PubMed]
    [Google Scholar]
  17. Derouiche A., Shi L., Bidnenko V., Ventroux M., Pigonneau N., Franz-Wachtel M., Kalantari A., Nessler S., Noirot-Gros M. F., Mijakovic I.. 2015; Bacillus subtilis SalA is a phosphorylation-dependent transcription regulator that represses scoC and activates the production of the exoprotease AprE. Mol Microbiol [CrossRef][PubMed]
    [Google Scholar]
  18. Didier J. P., Cozzone A. J., Duclos B.. 2010; Phosphorylation of the virulence regulator SarA modulates its ability to bind DNA in Staphylococcus aureus. FEMS Microbiol Lett306:30–36 [CrossRef][PubMed]
    [Google Scholar]
  19. Federle M. J., McIver K. S., Scott J. R.. 1999; A response regulator that represses transcription of several virulence operons in the group A streptococcus. J Bacteriol181:3649–3657[PubMed]
    [Google Scholar]
  20. Forst S., Delgado J., Inouye M.. 1989; Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc Natl Acad Sci U S A86:6052–6056 [CrossRef][PubMed]
    [Google Scholar]
  21. Fridman M., Williams G. D., Muzamal U., Hunter H., Siu K. W., Golemi-Kotra D.. 2013; Two unique phosphorylation-driven signaling pathways crosstalk in Staphylococcus aureus to modulate the cell-wall charge: Stk1/Stp1 meets GraSR. Biochemistry52:7975–7986 [CrossRef][PubMed]
    [Google Scholar]
  22. Fujita Y.. 2009; Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci Biotechnol Biochem73:245–259 [CrossRef][PubMed]
    [Google Scholar]
  23. Galperin M. Y.. 2010; Diversity of structure and function of response regulator output domains. Curr Opin Microbiol13:150–159 [CrossRef][PubMed]
    [Google Scholar]
  24. Gao R., Stock A. M.. 2009; Biological insights from structures of two-component proteins. Annu Rev Microbiol63:133–154 [CrossRef][PubMed]
    [Google Scholar]
  25. Gao R., Mack T. R., Stock A. M.. 2007; Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci32:225–234 [CrossRef][PubMed]
    [Google Scholar]
  26. Gustafsson M. C., Roitel O., Marshall K. R., Noble M. A., Chapman S. K., Pessegueiro A., Fulco A. J., Cheesman M. R., von Wachenfeldt C., Munro A. W.. 2004; Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Biochemistry43:5474–5487 [CrossRef][PubMed]
    [Google Scholar]
  27. Hammerstrom T. G., Horton L. B., Swick M. C., Joachimiak A., Osipiuk J., Koehler T. M.. 2015; Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity. Mol Microbiol95:426–441 [CrossRef][PubMed]
    [Google Scholar]
  28. Hoch J. A., Varughese K. I.. 2001; Keeping signals straight in phosphorelay signal transduction. J Bacteriol183:4941–4949 [CrossRef][PubMed]
    [Google Scholar]
  29. Jers C., Kobir A., Søndergaard E. O., Jensen P. R., Mijakovic I.. 2011; Bacillus subtilis two-component system sensory kinase DegS is regulated by serine phosphorylation in its input domain. PLoS One6:e14653 [CrossRef][PubMed]
    [Google Scholar]
  30. Jiang S. M., Cieslewicz M. J., Kasper D. L., Wessels M. R.. 2005; Regulation of virulence by a two-component system in group B streptococcus. J Bacteriol187:1105–1113 [CrossRef][PubMed]
    [Google Scholar]
  31. Kobayashi K.. 2007; Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol Microbiol66:395–409 [CrossRef][PubMed]
    [Google Scholar]
  32. Kobir A., Poncet S., Bidnenko V., Delumeau O., Jers C., Zouhir S., Grenha R., Nessler S., Noirot P., Mijakovic I.. 2014; Phosphorylation of Bacillus subtilis gene regulator AbrB modulates its DNA-binding properties. Mol Microbiol92:1129–1141 [CrossRef][PubMed]
    [Google Scholar]
  33. Kumar A., Toledo J. C., Patel R. P., Lancaster J. R. Jr, Steyn A. J.. 2007; Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc Natl Acad Sci U S A104:11568–11573 [CrossRef][PubMed]
    [Google Scholar]
  34. Laub M. T., Goulian M.. 2007; Specificity in two-component signal transduction pathways. Annu Rev Genet41:121–145 [CrossRef][PubMed]
    [Google Scholar]
  35. Lee T. R., Hsu H. P., Shaw G. C.. 2001; Transcriptional regulation of the Bacillus subtilis bscR-CYP102A3 operon by the BscR repressor and differential induction of cytochrome CYP102A3 expression by oleic acid and palmitate. J Biochem130:569–574 [CrossRef][PubMed]
    [Google Scholar]
  36. Leiba J., Hartmann T., Cluzel M. E., Cohen-Gonsaud M., Delolme F., Bischoff M., Molle V.. 2012; A novel mode of regulation of the Staphylococcus aureus catabolite control protein A (CcpA) mediated by Stk1 protein phosphorylation. J Biol Chem287:43607–43619 [CrossRef][PubMed]
    [Google Scholar]
  37. Leiba J., Carrère-Kremer S., Blondiaux N., Dimala M. M., Wohlkönig A., Baulard A., Kremer L., Molle V.. 2014; The Mycobacterium tuberculosis transcriptional repressor EthR is negatively regulated by serine/threonine phosphorylation. Biochem Biophys Res Commun446:1132–1138 [CrossRef][PubMed]
    [Google Scholar]
  38. Lentz O., Urlacher V., Schmid R. D.. 2004; Substrate specificity of native and mutated cytochrome P450 (CYP102A3) from Bacillus subtilis. J Biotechnol108:41–49 [CrossRef][PubMed]
    [Google Scholar]
  39. Lois A. F., Weinstein M., Ditta G. S., Helinski D. R.. 1993; Autophosphorylation and phosphatase activities of the oxygen-sensing protein FixL of Rhizobium meliloti are coordinately regulated by oxygen. J Biol Chem268:4370–4375[PubMed]
    [Google Scholar]
  40. Macek B., Mijakovic I., Olsen J. V., Gnad F., Kumar C., Jensen P. R., Mann M.. 2007; The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol Cell Proteomics6:697–707 [CrossRef][PubMed]
    [Google Scholar]
  41. Mäder U., Antelmann H., Buder T., Dahl M. K., Hecker M., Homuth G.. 2002; Bacillus subtilis functional genomics: genome-wide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol Genet Genomics268:455–467 [CrossRef][PubMed]
    [Google Scholar]
  42. Mijakovic I., Deutscher J.. 2015; Protein-tyrosine phosphorylation in Bacillus subtilis: a 10-year retrospective. Front Microbiol6:18 [CrossRef][PubMed]
    [Google Scholar]
  43. Mijakovic I., Poncet S., Galinier A., Monedero V., Fieulaine S., Janin J., Nessler S., Marquez J. A., Scheffzek K., other authors. 2002; Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: a relic of early life?. Proc Natl Acad Sci U S A99:13442–13447 [CrossRef][PubMed]
    [Google Scholar]
  44. Molle V., Kremer L.. 2010; Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Mol Microbiol75:1064–1077 [CrossRef][PubMed]
    [Google Scholar]
  45. Msadek T., Kunst F., Henner D., Klier A., Rapoport G., Dedonder R.. 1990; Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J Bacteriol172:824–834[PubMed]
    [Google Scholar]
  46. Ninfa A. J., Magasanik B.. 1986; Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc Natl Acad Sci U S A83:5909–5913 [CrossRef][PubMed]
    [Google Scholar]
  47. Nixon B. T., Ronson C. W., Ausubel F. M.. 1986; Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci U S A83:7850–7854 [CrossRef][PubMed]
    [Google Scholar]
  48. Ogura M., Yamaguchi H., Yoshida Ki Fujita,Y., Tanaka T.. 2001; DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B.subtilis two-component regulatory systems. Nucleic Acids Res29:3804–3813 [CrossRef][PubMed]
    [Google Scholar]
  49. Ogura M., Matsuzawa A., Yoshikawa H., Tanaka T.. 2004; Bacillus subtilis SalA (YbaL) negatively regulates expression of scoC, which encodes the repressor for the alkaline exoprotease gene, aprE. J Bacteriol186:3056–3064 [CrossRef][PubMed]
    [Google Scholar]
  50. Ohlsen K., Donat S.. 2010; The impact of serine/threonine phosphorylation in Staphylococcus aureus. Int J Med Microbiol300:137–141 [CrossRef][PubMed]
    [Google Scholar]
  51. Ong C. L., Potter A. J., Trappetti C., Walker M. J., Jennings M. P., Paton J. C., McEwan A. G.. 2013; Interplay between manganese and iron in pneumococcal pathogenesis: role of the orphan response regulator RitR. Infect Immun81:421–429 [CrossRef][PubMed]
    [Google Scholar]
  52. Park H. D., Guinn K. M., Harrell M. I., Liao R., Voskuil M. I., Tompa M., Schoolnik G. K., Sherman D. R.. 2003; Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol48:833–843 [CrossRef][PubMed]
    [Google Scholar]
  53. Prisic S., Dankwa S., Schwartz D., Chou M. F., Locasale J. W., Kang C. M., Bemis G., Church G. M., Steen H., Husson R. N.. 2010; Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc Natl Acad Sci U S A107:7521–7526 [CrossRef][PubMed]
    [Google Scholar]
  54. Rajagopal L., Vo A., Silvestroni A., Rubens C. E.. 2006; Regulation of cytotoxin expression by converging eukaryotic-type and two-component signalling mechanisms in Streptococcus agalactiae. Mol Microbiol62:941–957 [CrossRef][PubMed]
    [Google Scholar]
  55. Rampersaud A., Harlocker S. L., Inouye M.. 1994; The OmpR protein of Escherichia coli binds to sites in the ompF promoter region in a hierarchical manner determined by its degree of phosphorylation. J Biol Chem269:12559–12566[PubMed]
    [Google Scholar]
  56. Roberts D. M., Liao R. P., Wisedchaisri G., Hol W. G., Sherman D. R.. 2004; Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J Biol Chem279:23082–23087 [CrossRef][PubMed]
    [Google Scholar]
  57. Schmidt A., Trentini D. B., Spiess S., Fuhrmann J., Ammerer G., Mechtler K., Clausen T.. 2014; Quantitative phosphoproteomics reveals the role of protein arginine phosphorylation in the bacterial stress response. Mol Cell Proteomics13:537–550 [CrossRef][PubMed]
    [Google Scholar]
  58. Seidl K., Stucki M., Ruegg M., Goerke C., Wolz C., Harris L., Berger-Bächi B., Bischoff M.. 2006; Staphylococcus aureus CcpA affects virulence determinant production and antibiotic resistance. Antimicrob Agents Chemother50:1183–1194 [CrossRef][PubMed]
    [Google Scholar]
  59. Shi L., Pigeonneau N., Ravikumar V., Dobrinic P., Macek B., Franjevic D., Noirot-Gros M. F., Mijakovic I.. 2014a; Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues. Front Microbiol5:495 [CrossRef][PubMed]
    [Google Scholar]
  60. Shi L., Ji B., Kolar-Znika L., Boskovic A., Jadeau F., Combet C., Grangeasse C., Franjevic D., Talla E., Mijakovic I.. 2014b; Evolution of bacterial protein-tyrosine kinases and their relaxed specificity toward substrates. Genome Biol Evol6:800–817 [CrossRef][PubMed]
    [Google Scholar]
  61. Skerker J. M., Perchuk B. S., Siryaporn A., Lubin E. A., Ashenberg O., Goulian M., Laub M. T.. 2008; Rewiring the specificity of two-component signal transduction systems. Cell133:1043–1054 [CrossRef][PubMed]
    [Google Scholar]
  62. Soufi B., Kumar C., Gnad F., Mann M., Mijakovic I., Macek B.. 2010; Stable isotope labeling by amino acids in cell culture (SILAC) applied to quantitative proteomics of Bacillus subtilis. J Proteome Res9:3638–3646 [CrossRef][PubMed]
    [Google Scholar]
  63. Stock A. M., Robinson V. L., Goudreau P. N.. 2000; Two-component signal transduction. Annu Rev Biochem69:183–215 [CrossRef][PubMed]
    [Google Scholar]
  64. Sun F., Ding Y., Ji Q., Liang Z., Deng X., Wong C. C., Yi C., Zhang L., Xie S., other authors. 2012; Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proc Natl Acad Sci U S A109:15461–15466 [CrossRef][PubMed]
    [Google Scholar]
  65. Szurmant H., Hoch J. A.. 2010; Interaction fidelity in two-component signaling. Curr Opin Microbiol13:190–197 [CrossRef][PubMed]
    [Google Scholar]
  66. Szurmant H., White R. A., Hoch J. A.. 2007; Sensor complexes regulating two-component signal transduction. Curr Opin Struct Biol17:706–715 [CrossRef][PubMed]
    [Google Scholar]
  67. Tamber S., Schwartzman J., Cheung A. L.. 2010; Role of PknB kinase in antibiotic resistance and virulence in community-acquired methicillin-resistant. Staphylococcus aureus strain USA300. Infect Immun78:3637–3646 [CrossRef][PubMed]
    [Google Scholar]
  68. Throup J. P., Koretke K. K., Bryant A. P., Ingraham K. A., Chalker A. F., Ge Y., Marra A., Wallis N. G., Brown J. R., other authors. 2000; A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol35:566–576 [CrossRef][PubMed]
    [Google Scholar]
  69. Truong-Bolduc Q. C., Hooper D. C.. 2010; Phosphorylation of MgrA and its effect on expression of the NorA and NorB efflux pumps of Staphylococcus aureus. J Bacteriol192:2525–2534 [CrossRef][PubMed]
    [Google Scholar]
  70. Truong-Bolduc Q. C., Ding Y., Hooper D. C.. 2008; Posttranslational modification influences the effects of MgrA on norA expression in Staphylococcus aureus. J Bacteriol190:7375–7381 [CrossRef][PubMed]
    [Google Scholar]
  71. Ulijasz A. T., Andes D. R., Glasner J. D., Weisblum B.. 2004; Regulation of iron transport in Streptococcus pneumoniae by RitR, an orphan response regulator. J Bacteriol186:8123–8136 [CrossRef][PubMed]
    [Google Scholar]
  72. Ulijasz A. T., Falk S. P., Weisblum B.. 2009; Phosphorylation of the RitR DNA-binding domain by a Ser-Thr phosphokinase: implications for global gene regulation in the streptococci. Mol Microbiol71:382–390 [CrossRef][PubMed]
    [Google Scholar]
  73. Valle J., Toledo-Arana A., Berasain C., Ghigo J. M., Amorena B., Penadés J. R., Lasa I.. 2003; SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol48:1075–1087 [CrossRef][PubMed]
    [Google Scholar]
  74. Verhamme D. T., Kiley T. B., Stanley-Wall N. R.. 2007; DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol Microbiol65:554–568 [CrossRef][PubMed]
    [Google Scholar]
  75. Vitale G., Fabre E., Hurt E. C.. 1996; NBP35 encodes an essential and evolutionary conserved protein in Saccharomyces cerevisiae with homology to a superfamily of bacterial ATPases. Gene178:97–106 [CrossRef][PubMed]
    [Google Scholar]
  76. Whidbey C., Harrell M. I., Burnside K., Ngo L., Becraft A. K., Iyer L. M., Aravind L., Hitti J., Adams Waldorf K. M., Rajagopal L.. 2013; A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta. J Exp Med210:1265–1281 [CrossRef][PubMed]
    [Google Scholar]
  77. Wright D. P., Ulijasz A. T.. 2014; Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in Gram-positive bacterial pathogens. Virulence5:863–885 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000148
Loading
/content/journal/micro/10.1099/mic.0.000148
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error