1887

Abstract

CAIM 1792 is a marine bacterial strain that causes mortality in farmed shrimp in north-west Mexico, and the identification of virulence genes in this strain is important for understanding its pathogenicity. The aim of this work was to compare the CAIM 1792 genome with related genome sequences to determine their phylogenic relationship and explore unique regions that differentiate this strain from other strains. Twenty-one newly sequenced genomes were compared against the CAIM 1792 genome at nucleotidic and predicted proteome levels. The proteome of CAIM 1792 had higher similarity to those of other strains (78 %) than to those of the other closely related species (67 %), (63 %) and (59 %). Pan-genome ORFans trees showed the best fit with the accepted phylogeny based on DNA–DNA hybridization and multi-locus sequence analysis of 11 concatenated housekeeping genes. SNP analysis clustered 34/38 genomes within their accepted species. The pangenomic and SNP trees showed that is the most conserved of the four species studied and may be divided into at least three subspecies, supported by intergenomic distance analysis. atlases were created to identify unique regions among the genomes most related to CAIM 1792; these regions included genes encoding glycosyltransferases, specific type restriction modification systems and a transcriptional regulator, LysR, reported to be involved in virulence, metabolism, quorum sensing and motility.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000141
2015-09-01
2020-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/9/1762.html?itemId=/content/journal/micro/10.1099/mic.0.000141&mimeType=html&fmt=ahah

References

  1. Amaral G. R. S., Silva B.S.D.O., Santos E. O., Dias G. M., Lopes R. M., Edwards R. A., Thompson C. C., Thompson F. L.. 2012; Genome sequence of the bacterioplanktonic, mixotrophic Vibrio campbellii strain PEL22A, isolated in the Abrolhos Bank. J Bacteriol194:2759–2760 [CrossRef][PubMed]
    [Google Scholar]
  2. Amaral G. R. S., Dias G. M., Wellington-Oguri M., Chimetto L., Campeão M. E., Thompson F. L., Thompson C. C.. 2014; Genotype to phenotype: identification of diagnostic vibrio phenotypes using whole genome sequences. Int J Syst Evol Microbiol64:357–365 [CrossRef][PubMed]
    [Google Scholar]
  3. Ayala-Castro C., Saini A., Outten F. W.. 2008; Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev72:110–125 [CrossRef][PubMed]
    [Google Scholar]
  4. Babu M. M., Luscombe N. M., Aravind L., Gerstein M., Teichmann S. A.. 2004; Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol14:283–291 [CrossRef][PubMed]
    [Google Scholar]
  5. Baker K. R., Postle K.. 2013; Mutations in Escherichia coli ExbB transmembrane domains identify scaffolding and signal transduction functions and exclude participation in a proton pathway. J Bacteriol195:2898–2911 [CrossRef][PubMed]
    [Google Scholar]
  6. Baldi P., Brunak S., Chauvin Y., Krogh A.. 1996; Naturally occurring nucleosome positioning signals in human exons and introns. J Mol Biol263:503–510 [CrossRef][PubMed]
    [Google Scholar]
  7. Bassler B. L., Greenberg E. P., Stevens A. M.. 1997; Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi . J Bacteriol179:4043–4045[PubMed]
    [Google Scholar]
  8. Bolshoy A., McNamara P., Harrington R. E., Trifonov E. N.. 1991; Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. Proc Natl Acad Sci U S A88:2312–2316 [CrossRef][PubMed]
    [Google Scholar]
  9. Brenner S. E., Hubbard T., Murzin A., Chothia C.. 1995; Gene duplications in H. influenzae . Nature378:140 [CrossRef][PubMed]
    [Google Scholar]
  10. Cano-Gomez A., Bourne D. G., Hall M. R., Owens L., Høj L.. 2009; Molecular identification, typing and tracking of Vibrio harveyi in aquaculture systems: current methods and future prospects. Aquaculture287:1–10 [CrossRef]
    [Google Scholar]
  11. Cano-Gómez A., Goulden E. F., Owens L., Høj L.. 2010; Vibrio owensii sp. nov., isolated from cultured crustaceans in Australia. FEMS Microbiol Lett302:175–181 [CrossRef][PubMed]
    [Google Scholar]
  12. Cano-Gomez A., Høj L., Owens L., Andreakis N.. 2011; Multilocus sequence analysis provides basis for fast and reliable identification of Vibrio harveyi-related species and reveals previous misidentification of important marine pathogens. Syst Appl Microbiol34:561–565 [CrossRef][PubMed]
    [Google Scholar]
  13. Chen Y., Stine O. C., Badger J. H., Gil A. I., Nair G. B., Nishibuchi M., Fouts D. E.. 2011; Comparative genomic analysis of Vibrio parahaemolyticus: serotype conversion and virulence. BMC Genomics12:294 [CrossRef][PubMed]
    [Google Scholar]
  14. Chimetto L. A., Cleenwerck I., Alves N. Jr, Silva B. S., Brocchi M., Willems A., De Vos P., Thompson F. L.. 2011; Vibrio communis sp. nov., isolated from the marine animals Mussismilia hispida, Phyllogorgia dilatata, Palythoa caribaeorum, Palythoa variabilis and Litopenaeus vannamei . Int J Syst Evol Microbiol61:362–368 [CrossRef][PubMed]
    [Google Scholar]
  15. Conant G. C., Wolfe K. H.. 2008; Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet9:938–950 [CrossRef][PubMed]
    [Google Scholar]
  16. Das B., Bischerour J., Barre F. X.. 2011; Molecular mechanism of acquisition of the cholera toxin genes. Indian J Med Res133:195–200[PubMed]
    [Google Scholar]
  17. Dias G. M., Thompson C. C., Fishman B., Naka H., Haygood M. G., Crosa J. H., Thompson F. L.. 2012; Genome sequence of the marine bacterium Vibrio campbellii DS40M4, isolated from open ocean water. J Bacteriol194:904 [CrossRef][PubMed]
    [Google Scholar]
  18. Espinoza-Valles I., Soto-Rodríguez S., Edwards R. A., Wang Z., Vora G. J., Gómez-Gil B.. 2012; Draft genome sequence of the shrimp pathogen Vibrio harveyi CAIM 1792. J Bacteriol194:2104 [CrossRef][PubMed]
    [Google Scholar]
  19. Gelfand M. S.. 2006; Evolution of transcriptional regulatory networks in microbial genomes. Curr Opin Struct Biol16:420–429 [CrossRef][PubMed]
    [Google Scholar]
  20. Gomez-Gil B., Thompson F. L., Thompson C. C., Swings J.. 2003; Vibrio rotiferianus sp. nov., isolated from cultures of the rotifer Brachionus plicatilis. Int J Syst Evol Microbiol53:239–243 [CrossRef][PubMed]
    [Google Scholar]
  21. Gomez-Gil B., Soto-Rodríguez S., Lozano R., Betancourt-Lozano M.. 2014; Draft Genome sequence of Vibrio parahaemolyticus strain M0605, which causes severe mortalities of shrimps in Mexico. Genome Announc2:e0005514 [CrossRef][PubMed]
    [Google Scholar]
  22. Grimes D. J., Stemmler J., Hada H., May E. B., Maneval D., Hetrick F. M., Jones R. T., Stoskopf M., Colwell R. R.. 1984; Vibrio species associated with mortality of sharks held in captivity. Microb Ecol10:271–282 [CrossRef][PubMed]
    [Google Scholar]
  23. Hadjifrangiskou M., Koehler T. M.. 2012; Intrinsic curvature associated with the coordinately regulated anthrax toxin gene promoters. NIH Public Access29:(6)997–1003 [CrossRef][PubMed]
    [Google Scholar]
  24. Harris L. J., Owens L.. 1999; Production of exotoxins by two luminous Vibrio harveyi strains known to be primary pathogens of Penaeus monodon larvae. Dis Aquat Organ38:11–22 [CrossRef]
    [Google Scholar]
  25. Hoang T. T., Sullivan S. A., Cusick J. K., Schweizer H. P.. 2002; Beta-ketoacyl acyl carrier protein reductase (FabG) activity of the fatty acid biosynthetic pathway is a determining factor of 3-oxo-homoserine lactone acyl chain lengths. Microbiology148:3849–3856[PubMed][CrossRef]
    [Google Scholar]
  26. Hoffmann M., Monday S. R., McCarthy P. J., Lopez J. V., Fischer M., Brown E. W.. 2013; Cladistics Genetic and phylogenetic evidence for horizontal gene transfer among ecologically disparate groups of marine Vibrio . Cladistics29:46–64 [CrossRef]
    [Google Scholar]
  27. Huang Y., Jian J., Lu Y., Cai S., Wang B., Tang J., Pang H., Ding Y., Wu Z.. 2012; Draft genome sequence of the fish pathogen Vibrio harveyi strain ZJ0603. J Bacteriol194:6644–6645 [CrossRef][PubMed]
    [Google Scholar]
  28. Hurley J. M., Woychik N. A.. 2009; Bacterial toxin HigB associates with ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites. J Biol Chem284:18605–18613 [CrossRef][PubMed]
    [Google Scholar]
  29. Hyatt D., Chen G. L., Locascio P. F., Land M. L., Larimer F. W., Hauser L. J.. 2010; Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics11:119 [CrossRef][PubMed]
    [Google Scholar]
  30. Johnson F. H., Shunk I.V. 1936; An interesting new species of luminous bacteria. Journal of Bacteriology31:585–592
    [Google Scholar]
  31. Jacobsen A., Hendriksen R. S., Aaresturp F. M., Ussery D. W., Friis C.. 2011; The Salmonella enterica pan-genome. Microb Ecol62:487–504 [CrossRef][PubMed]
    [Google Scholar]
  32. Kahlke T., Goesmann A., Hjerde E., Willassen N. P., Haugen P.. 2012; Unique core genomes of the bacterial family vibrionaceae: insights into niche adaptation and speciation. BMC Genomics13:179 [CrossRef][PubMed]
    [Google Scholar]
  33. Karsch-Mizrachi I., Nakamura Y., Cochrane G., International Nucleotide Sequence Database Collaboration. 2012; The International Nucleotide Sequence Database Collaboration. Nucleic Acids Res40:(D1)D33–D37 [CrossRef][PubMed]
    [Google Scholar]
  34. Khalturin K., Anton-Erxleben F., Sassmann S., Wittlieb J., Hemmrich G., Bosch T. C. G.. 2008; A novel gene family controls species-specific morphological traits in Hydra . PLoS Biol6:e278 [CrossRef][PubMed]
    [Google Scholar]
  35. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  36. Krüger D. H., Bickle T. A.. 1983; Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev47:345–360[PubMed]
    [Google Scholar]
  37. Lan S. F., Huang C. H., Chang C. H., Liao W. C., Lin I. H., Jian W. N., Wu Y. G., Chen S. Y., Wong H. C.. 2009; Characterization of a new plasmid-like prophage in a pandemic Vibrio parahaemolyticus O3:K6 strain. Appl Environ Microbiol75:2659–2667 [CrossRef][PubMed]
    [Google Scholar]
  38. Leekitcharoenphon P., Kaas R. S., Thomsen M. C. F., Friis C., Rasmussen S., Aarestrup F. M.. 2012; snpTree—a web-server to identify and construct SNP trees from whole genome sequence data. BMC Genomics13:(Suppl. 7)S6 [CrossRef][PubMed]
    [Google Scholar]
  39. Li N., Kojima S., Homma M.. 2011; Sodium-driven motor of the polar flagellum in marine bacteria Vibrio . Genes Cells16:985–999 [CrossRef][PubMed]
    [Google Scholar]
  40. Lin B., Wang Z., Malanoski A. P., O'Grady E. A., Wimpee C. F., Vuddhakul V., Alves N. Jr, Thompson F. L., Gomez-Gil B., Vora G. J.. 2010; Comparative genomic analyses identify the Vibrio harveyi genome sequenced strains BAA-1116 and HY01 as Vibrio campbellii . Environ Microbiol Rep2:81–89 [CrossRef][PubMed]
    [Google Scholar]
  41. Lu J., Holmgren A.. 2014; The thioredoxin antioxidant system. Free Radic Biol Med66:75–87 [CrossRef][PubMed]
    [Google Scholar]
  42. Lukjancenko O., Ussery D. W., Wassenaar T. M.. 2012; Comparative genomics of Bifidobacterium, Lactobacillus and related probiotic genera. Microb Ecol63:651–673 [CrossRef][PubMed]
    [Google Scholar]
  43. Maddocks S. E., Oyston P. C. F.. 2008; Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology (Reading, England)154:(Pt 12)3609–23[CrossRef]
    [Google Scholar]
  44. McLean M. J., Wolfe K. H., Devine K. M.. 1998; Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J Mol Evol47:691–696 [CrossRef][PubMed]
    [Google Scholar]
  45. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M.. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  46. Mekalanos J. J.. 1983; Duplication and amplification of toxin genes in Vibrio cholerae . Cell35:253–263 [CrossRef][PubMed]
    [Google Scholar]
  47. Mey A. R., Wyckoff E. E., Oglesby A. G., Rab E., Taylor R. K., Payne S. M.. 2002; Identification of the Vibrio cholerae enterobactin receptors VctA and IrgA: IrgA is not required for virulence. Infect Immun70:3419–3426 [CrossRef][PubMed]
    [Google Scholar]
  48. Ornstein R. L., Rein R., Breen D. L., Macelroy R. D.. 1978; An optimized potential function for the calculation of nucleic acid interaction energies I. Base stacking. Biopolymers17:(10)2341–2360http://doi.org/doi: 10.1002/bip.1978.360171005[CrossRef]
    [Google Scholar]
  49. Ogierman M. A., Fallarino A., Riess T., Williams S. G., Attridge S. R., Manning P. A.. 1997; Characterization of the Vibrio cholerae El Tor lipase operon lipAB and a protease gene downstream of the hly region. J Bacteriol179:7072–7080[PubMed]
    [Google Scholar]
  50. Pascual J., Macián M. C., Arahal D. R., Garay E., Pujalte M. J.. 2010; Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int J Syst Evol Microbiol60:154–165 [CrossRef][PubMed]
    [Google Scholar]
  51. Pedersen K., Verdonck L., Austin B., Austin D. A., Blanch A. R., Grimont P. A. D., Jofre J., Koblavi S., Larsen J. L., other authors. 1998; Taxonomic evidence that Vibrio carchariae Grimes et al. 1985 is a junior synonym of Vibrio harveyi (Johnson and Shunk 1936) Baumann et al. 1981. Int J Syst Bacteriol48:749–758 [CrossRef]
    [Google Scholar]
  52. Rattanama P., Srinitiwarawong K., Thompson J. R., Pomwised R., Supamattaya K., Vuddhakul V.. 2009; Shrimp pathogenicity, hemolysis, and the presence of hemolysin and TTSS genes in Vibrio harveyi isolated from Thailand. Dis Aquat Organ86:113–122 [CrossRef][PubMed]
    [Google Scholar]
  53. Reichelt J., Baumann P.. 1973; Taxonomy of the marine lumi- nous bacteria. Arch Microbiol94:283–330 [CrossRef][PubMed]
    [Google Scholar]
  54. Rivera-Posada J. A., Pratchett M., Cano-Gomez A., Arango-Gomez J. D., Owens L.. 2011; Refined identification of Vibrio bacterial flora from Acanthasther planci based on biochemical profiling and analysis of housekeeping genes. Dis Aquat Organ96:113–123 [CrossRef][PubMed]
    [Google Scholar]
  55. Ross J. A., Plano G. V.. 2011; A C-terminal region of Yersinia pestis YscD binds the outer membrane secretin YscC. J Bacteriol193:2276–2289 [CrossRef][PubMed]
    [Google Scholar]
  56. Roy Chowdhury P., Boucher Y., Hassan K. A., Paulsen I. T., Stokes H. W., Labbate M.. 2011; Genome sequence of Vibrio rotiferianus strain DAT722. J Bacteriol193:3381–3382 [CrossRef][PubMed]
    [Google Scholar]
  57. Rybniker J., Pojer F., Marienhagen J., Kolly G. S., Chen J. M., van Gumpel E., Hartmann P., Cole S. T.. 2014; The cysteine desulfurase IscS of Mycobacterium tuberculosis is involved in iron-sulfur cluster biogenesis and oxidative stress defence. Biochem J459:467–478 [CrossRef][PubMed]
    [Google Scholar]
  58. Sawabe T., Kita-Tsukamoto K., Thompson F. L.. 2007; Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol189:7932–7936 [CrossRef][PubMed]
    [Google Scholar]
  59. Sawabe T., Ogura Y., Matsumura Y., Feng G., Amin A. R., Mino S., Nakagawa S., Sawabe T., Kumar R., other authors. 2013; Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front Microbiol4:414 [CrossRef][PubMed]
    [Google Scholar]
  60. Shpigelman E. S., Trifonov E. N., Bolshoy A.. 1993; curvature: software for the analysis of curved DNA. Comput Appl Biosci9:435–440[PubMed]
    [Google Scholar]
  61. Snipen L., Ussery D. W.. 2010; Standard operating procedure for computing pangenome trees. Stand Genomic Sci2:135–141 [CrossRef][PubMed]
    [Google Scholar]
  62. Soto-Rodriguez S. A., Gomez-Gil B., Lozano R.. 2010; ‘Bright-red’ syndrome in Pacific white shrimp Litopenaeus vannamei is caused by Vibrio harveyi . Dis Aquat Organ92:11–19 [CrossRef][PubMed]
    [Google Scholar]
  63. Stintzi A., Evans K., Meyer J. M., Poole K.. 1998; Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol Lett166:341–345 [CrossRef][PubMed]
    [Google Scholar]
  64. Taguchi F., Ogawa Y., Takeuchi K., Suzuki T., Toyoda K., Shiraishi T., Ichinose Y.. 2006; A homologue of the 3-oxoacyl-(acyl carrier protein) synthase III gene located in the glycosylation island of Pseudomonas syringae pv. tabaci regulates virulence factors via N-acyl homoserine lactone and fatty acid synthesis. J Bacteriol188:8376–8384 [CrossRef][PubMed]
    [Google Scholar]
  65. Taguchi F., Suzuki T., Inagaki Y., Toyoda K., Shiraishi T., Ichinose Y.. 2010; The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J Bacteriol192:117–126 [CrossRef][PubMed]
    [Google Scholar]
  66. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  67. Teichmann S. A., Babu M. M.. 2004; Gene regulatory network growth by duplication. Nat Genet36:492–496 [CrossRef][PubMed]
    [Google Scholar]
  68. Teichmann S. A., Park J., Chothia C.. 1998; Structural assignments to the Mycoplasma genitalium proteins show extensive gene duplications and domain rearrangements. Proc Natl Acad Sci U S A95:14658–14663 [CrossRef][PubMed]
    [Google Scholar]
  69. Tettelin H., Masignani V., Cieslewicz M. J., Donati C., Medini D., Ward N. L., Angiuoli S. V., Crabtree J., Jones A. L., other authors. 2005; Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A102:13950–13955 [CrossRef][PubMed]
    [Google Scholar]
  70. Thompson F. L., Gomez-Gil B., Vasconcelos A. T. R., Sawabe T.. 2007; Multilocus sequence analysis reveals that Vibrio harveyi and V. campbellii are distinct species. Appl Environ Microbiol73:4279–4285 [CrossRef][PubMed]
    [Google Scholar]
  71. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  72. Thompson F. L., Iida T., Swings J.. 2004; Biodiversity of vibrios. Microbiol Mol Biol Rev68:403–431 [CrossRef][PubMed]
    [Google Scholar]
  73. Thompson F. L., Gevers D., Thompson C. C., Dawyndt P., Naser S., Hoste B., Munn C. B., Swings J.. 2005; Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol71:5107–5115 [CrossRef][PubMed]
    [Google Scholar]
  74. Thompson C. C., Vicente A. C. P., Souza R. C., Vasconcelos A. T. R., Vesth T., Alves N. Jr, Ussery D. W., Iida T., Thompson F. L.. 2009; Genomic taxonomy of Vibrios . BMC Evol Biol9:258 [CrossRef][PubMed]
    [Google Scholar]
  75. Troisfontaines P., Cornelis G. R.. 2005; Type III secretion: more systems than you think. Physiology (Bethesda)20:326–339 [CrossRef][PubMed]
    [Google Scholar]
  76. UniProt Consortium 2014; Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res42:(D1)D191–D198 [CrossRef][PubMed]
    [Google Scholar]
  77. Urbanczyk H., Ogura Y., Hayashi T.. 2013; Taxonomic revision of Harveyi clade bacteria (family Vibrionaceae) based on analysis of whole genome sequences. Int J Syst Evol Microbiol63:2742–2751 [CrossRef][PubMed]
    [Google Scholar]
  78. Ussery D. W., Borini S., Wassenaar T. M.. 2009; Computing for Comparative Microbial Genomics: Bioinformatics for Microbiologists (Computational Series vol. 8) London: Springer;[CrossRef]
    [Google Scholar]
  79. Vesth T., Wassenaar T. M., Hallin P. F., Snipen L., Lagesen K., Ussery D. W.. 2010; On the origins of a Vibrio species. Microb Ecol59:1–13 [CrossRef][PubMed]
    [Google Scholar]
  80. Vesth T., Lagesen K., Acar Ö., Ussery D.. 2013; CMG-biotools, a free workbench for basic comparative microbial genomics. PLoS One8:e60120 [CrossRef][PubMed]
    [Google Scholar]
  81. Yoshizawa S., Wada M., Kita-Tsukamoto K., Ikemoto E., Yokota A., Kogure K.. 2009; Vibrio azureus sp. nov., a luminous marine bacterium isolated from seawater. Int J Syst Evol Microbiol59:1645–1649 [CrossRef][PubMed]
    [Google Scholar]
  82. Yu G., Stoltzfus A.. 2012; Population diversity of ORFan genes in Escherichia coli . Genome Biol Evol4:1176–1187 [CrossRef][PubMed]
    [Google Scholar]
  83. Yu M., Ren C., Qiu J., Luo P., Zhu R., Zhao Z., Hu C.. 2013; Draft genome sequence of the opportunistic marine pathogen Vibrio harveyi strain E385. Genome Announc1:e00677–e00613 [CrossRef][PubMed]
    [Google Scholar]
  84. Zhang X. H., Meaden P. G., Austin B.. 2001; Duplication of hemolysin genes in a virulent isolate of Vibrio harveyi . Appl Environ Microbiol67:3161–3167 [CrossRef][PubMed]
    [Google Scholar]
  85. Zhang H., Zhu F., Yang T., Ding L., Zhou M., Li J., Haslam S. M., Dell A., Erlandsen H., Wu H.. 2014; The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold. Nat Commun5:4339[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000141
Loading
/content/journal/micro/10.1099/mic.0.000141
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error