1887

Abstract

RsmA is a post-transcriptional RNA-binding protein that acts as a pleiotropic global regulator of mRNAs in the opportunistic pathogen . Upon binding to its target, RsmA impedes the translation of the mRNA by the ribosome. The RsmA regulon affects over 500 genes, many of which have been identified as important in the pathogenicity of . Whilst the regulatory function of RsmA is relatively well characterized, the genetic regulation of itself at the transcriptional and translational levels remains poorly understood. Here, we show that RsmA is capable of self-regulation through an unorthodox mechanism. This regulation occurs via direct interaction of the protein with an RsmA-binding site located in the early portion of its coding sequence. To the best of our knowledge this is the first report of such an unusual regulation in pseudomonads.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000140
2015-09-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/9/1889.html?itemId=/content/journal/micro/10.1099/mic.0.000140&mimeType=html&fmt=ahah

References

  1. Baker C. S., Morozov I., Suzuki K., Romeo T., Babitzke P.. ( 2002;). CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol 44: 1599–1610 [CrossRef] [PubMed].
    [Google Scholar]
  2. Baker C. S., Eöry L. A., Yakhnin H., Mercante J., Romeo T., Babitzke P.. ( 2007;). CsrA inhibits translation initiation of Escherichia coli hfq by binding to a single site overlapping the Shine-Dalgarno sequence. J Bacteriol 189: 5472–5481 [CrossRef] [PubMed].
    [Google Scholar]
  3. Brencic A., Lory S.. ( 2009;). Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol 72: 612–632 [CrossRef] [PubMed].
    [Google Scholar]
  4. Brencic A., McFarland K. A., McManus H. R., Castang S., Mogno I., Dove S. L., Lory S.. ( 2009;). The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol 73: 434–445 [CrossRef] [PubMed].
    [Google Scholar]
  5. Burrowes E., Baysse C., Adams C., O'Gara F.. ( 2006;). Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152: 405–418 [CrossRef] [PubMed].
    [Google Scholar]
  6. Dötsch A., Eckweiler D., Schniederjans M., Zimmermann A., Jensen V., Scharfe M., Geffers R., Häussler S.. ( 2012;). The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing. PLoS One 7: e31092 [CrossRef] [PubMed].
    [Google Scholar]
  7. Dubey A. K., Baker C. S., Romeo T., Babitzke P.. ( 2005;). RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. RNA 11: 1579–1587 [CrossRef] [PubMed].
    [Google Scholar]
  8. Goodman A. L., Kulasekara B., Rietsch A., Boyd D., Smith R. S., Lory S.. ( 2004;). A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7: 745–754 [CrossRef] [PubMed].
    [Google Scholar]
  9. Goodman A. L., Merighi M., Hyodo M., Ventre I., Filloux A., Lory S.. ( 2009;). Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev 23: 249–259 [CrossRef] [PubMed].
    [Google Scholar]
  10. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.. ( 1998;). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77–86 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hoang T. T., Kutchma A. J., Becher A., Schweizer H. P.. ( 2000;). Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43: 59–72 [CrossRef] [PubMed].
    [Google Scholar]
  12. Lapouge K., Schubert M., Allain F. H., Haas D.. ( 2008;). Gac/Rsm signal transduction pathway of γ-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67: 241–253 [CrossRef] [PubMed].
    [Google Scholar]
  13. Liberati N. T., Urbach J. M., Miyata S., Lee D. G., Drenkard E., Wu G., Villanueva J., Wei T., Ausubel F. M.. ( 2006;). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA 103: 2833–2838 [CrossRef] [PubMed].
    [Google Scholar]
  14. Marden J. N., Diaz M. R., Walton W. G., Gode C. J., Betts L., Urbanowski M. L., Redinbo M. R., Yahr T. L., Wolfgang M. C.. ( 2013;). An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 110: 15055–15060 [CrossRef] [PubMed].
    [Google Scholar]
  15. Miller J. H.. ( 1972;). Experiments in Molecular Genetics Cold Spring Harbor. NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  16. Morris E. R., Hall G., Li C., Heeb S., Kulkarni R. V., Lovelock L., Silistre H., Messina M., Cámara M., other authors. ( 2013;). Structural rearrangement in an RsmA/CsrA ortholog of Pseudomonas aeruginosa creates a dimeric RNA-binding protein, RsmN. Structure 21: 1659–1671 [CrossRef] [PubMed].
    [Google Scholar]
  17. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M.. ( 1995;). Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899–1902 [CrossRef] [PubMed].
    [Google Scholar]
  18. Romeo T., Vakulskas C. A., Babitzke P.. ( 2013;). Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ Microbiol 15: 313–324 [CrossRef] [PubMed].
    [Google Scholar]
  19. Simon R., Priefer U., Puhler A.. ( 1983;). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Nat Biotechnol 1: 784–791 [CrossRef].
    [Google Scholar]
  20. Sonnleitner E., Haas D.. ( 2011;). Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species. Appl Microbiol Biotechnol 91: 63–79 [CrossRef] [PubMed].
    [Google Scholar]
  21. Studier F. W., Moffatt B. A.. ( 1986;). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189: 113–130 [CrossRef] [PubMed].
    [Google Scholar]
  22. Ventre I., Goodman A. L., Vallet-Gely I., Vasseur P., Soscia C., Molin S., Bleves S., Lazdunski A., Lory S., Filloux A.. ( 2006;). Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A 103: 171–176 [CrossRef] [PubMed].
    [Google Scholar]
  23. Woodcock D. M., Crowther P. J., Doherty J., Jefferson S., DeCruz E., Noyer-Weidner M., Smith S. S., Michael M. Z., Graham M. W.. ( 1989;). Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17: 3469–3478 [CrossRef] [PubMed].
    [Google Scholar]
  24. Wurtzel O., Yoder-Himes D. R., Han K., Dandekar A. A., Edelheit S., Greenberg E. P., Sorek R., Lory S.. ( 2012;). The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature. PLoS Pathog 8: e1002945 [CrossRef] [PubMed].
    [Google Scholar]
  25. Yakhnin H., Baker C. S., Berezin I., Evangelista M. A., Rassin A., Romeo T., Babitzke P.. ( 2011a;). CsrA represses translation of sdiA, which encodes the N-acylhomoserine-l-lactone receptor of Escherichia coli, by binding exclusively within the coding region of sdiA mRNA. J Bacteriol 193: 6162–6170 [CrossRef] [PubMed].
    [Google Scholar]
  26. Yakhnin H., Yakhnin A. V., Baker C. S., Sineva E., Berezin I., Romeo T., Babitzke P.. ( 2011b;). Complex regulation of the global regulatory gene csrA: CsrA-mediated translational repression, transcription from five promoters by Eσ70 and EσS, and indirect transcriptional activation by CsrA. Mol Microbiol 81: 689–704 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000140
Loading
/content/journal/micro/10.1099/mic.0.000140
Loading

Data & Media loading...

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error