Identification and characterization of conserved and variable regions of lime witches’ broom phytoplasma genome Free

Abstract

Several segments (∼20 kbp) of the lime witches’ broom (LWB) phytoplasma genome (16SrII group) were sequenced and analysed. A 5.7 kbp segment (LWB-C) included conserved genes whose phylogenetic tree was consistent with that generated using 16S rRNA genes. Another 6.4 kbp LWB phytoplasma genome segment (LWB-NC) was structurally similar to the putative mobile unit or sequence variable mosaic genomic region of phytoplasmas, although it represented a new arrangement of genes or pseudogenes such as phage-related protein genes and insertion sequences. Sequence- and phylogenetic-based evidence suggested that LWB-NC is a genomic region which includes horizontally transferred genes and could be regarded as a hot region to incorporate more foreign genes into the genome of LWB phytoplasma. The presence of phylogenetically related fragments of retroelements was also verified in the LWB phytoplasma genome. Putative intragenomic retrotransposition or retrohoming of these elements might have been determinant in shaping and manipulating the LWB phytoplasma genome. Altogether, the results of this study suggested that the genome of LWB phytoplasma is colonized by a variety of genes that have been acquired through horizontal gene transfer events, which may have further affected the genome through intragenomic mobility and insertion at cognate or incognate sites. Some of these genes are expected to have been involved in the development of features specific to LWB phytoplasma.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000133
2015-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/9/1741.html?itemId=/content/journal/micro/10.1099/mic.0.000133&mimeType=html&fmt=ahah

References

  1. Andersen M. T., Liefting L. W., Havukkala I., Beever R. E. 2013; Comparison of the complete genome sequence of two closely related isolates of ‘Candidatus Phytoplasma australiense’ reveals genome plasticity. BMC Genomics 14:529 [View Article][PubMed]
    [Google Scholar]
  2. Bai X., Zhang J., Ewing A., Miller S. A., Jancso Radek A., Shevchenko D. V., Tsukerman K., Walunas T., Lapidus A., other authors. 2006; Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 188:3682–3696 [View Article][PubMed]
    [Google Scholar]
  3. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795 [View Article][PubMed]
    [Google Scholar]
  4. Bertaccini A., Duduk B. 2009; Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathol Mediterr 48:355–378
    [Google Scholar]
  5. Chung W. C., Chen L. L., Lo W. S., Lin C. P., Kuo C. H. 2013; Comparative analysis of the peanut witches’-broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PLoS One 8:e62770 [View Article][PubMed]
    [Google Scholar]
  6. Cimerman A., Arnaud G., Foissac X. 2006; Stolbur phytoplasma genome survey achieved using a suppression subtractive hybridization approach with high specificity. Appl Environ Microbiol 72:3274–3283 [View Article][PubMed]
    [Google Scholar]
  7. Contaldo N., Bertaccini A., Paltrinieri S., Windsor H. M., Windsor G. D. 2012; Axenic culture of plant pathogenic phytoplasmas. Phytopathol Mediterr 51:607–617
    [Google Scholar]
  8. Engelberg-Kulka H. 1981; UGA suppression by normal tRNA Trp in Escherichia coli: codon context effects. Nucleic Acids Res 9:983–991 [View Article][PubMed]
    [Google Scholar]
  9. González B., Ceciliani F., Galizzi A. 2003; Growth at low temperature suppresses readthrough of the UGA stop codon during the expression of Bacillus subtilis flgM gene in Escherichia coli. J Biotechnol 101:173–180 [View Article][PubMed]
    [Google Scholar]
  10. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  11. Gundersen D. E., Lee I. M. 1996; Ultrasensitive detection of phytoplasmas by nested PCR assays using two universal primer pairs. Phytopathol Mediterr 35:144–151
    [Google Scholar]
  12. Hogenhout S. A., Oshima K., Ammar D., Kakizawa S., Kingdom H. N., Namba S. 2008; Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9:403–423 [View Article][PubMed]
    [Google Scholar]
  13. Jomantiene R., Davis R. E. 2006; Clusters of diverse genes existing as multiple, sequence-variable mosaics in a phytoplasma genome. FEMS Microbiol Lett 255:59–65 [View Article][PubMed]
    [Google Scholar]
  14. Jomantiene R., Zhao Y., Davis R. E. 2007; Sequence-variable mosaics: composites of recurrent transposition characterizing the genomes of phylogenetically diverse phytoplasmas. DNA Cell Biol 26:557–564 [View Article][PubMed]
    [Google Scholar]
  15. Kakizawa S., Makino A., Ishii Y., Tamaki H., Kamagata Y. 2014; Draft genome sequence of “Candidatus Phytoplasma asteris” strain OY-V, an unculturable plant-pathogenic bacterium. Genome Announc 2:e00944–e00914 [View Article][PubMed]
    [Google Scholar]
  16. Käll L., Krogh A., Sonnhammer E. L. 2004; A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036 [View Article][PubMed]
    [Google Scholar]
  17. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580 [View Article][PubMed]
    [Google Scholar]
  18. Kube M., Schneider B., Kuhl H., Dandekar T., Heitmann K., Migdoll A. M., Reinhardt R., Seemüller E. 2008; The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics 9:306 [View Article][PubMed]
    [Google Scholar]
  19. Kube M., Mitrovic J., Duduk B., Rabus R., Seemüller E. 2012; Current view on phytoplasma genomes and encoded metabolism. ScientificWorldJournal 2012:185942 [View Article][PubMed]
    [Google Scholar]
  20. Lee I. M., Davis R. E., Gundersen-Rindal D. E. 2000; Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54:221–255 [View Article][PubMed]
    [Google Scholar]
  21. Lim P. O., Sears B. B. 1992; Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. J Bacteriol 174:2606–2611
    [Google Scholar]
  22. Mahillon J., Chandler M. 1998; Insertion sequences. Microbiol Mol Biol Rev 62:725–774
    [Google Scholar]
  23. Maixner M., Ahrens U., Seemuller E. 1995; Detection of the German grapevine yellows (Vergilbungskrankheit) MLO in grapevine, alternative hosts and a vector by a specific PCR procedure. Eur J Plant Pathol 101:241–250 [View Article]
    [Google Scholar]
  24. Marcone C., Neimark H., Ragozzino A., Lauer U., Seemüller E. 1999; Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. Phytopathology 89:805–810 [View Article][PubMed]
    [Google Scholar]
  25. Matsugi J., Murao K., Ishikura H. 1998; Effect of B. subtilis tRNATrp on readthrough rate at an opal UGA codon. J Biochem 123:853–858 [View Article][PubMed]
    [Google Scholar]
  26. Mitrović J., Siewert C., Duduk B., Hecht J., Mölling K., Broecker F., Beyerlein P., Büttner C., Bertaccini A., Kube M. 2014; Generation and analysis of draft sequences of ‘stolbur’ phytoplasma from multiple displacement amplification templates. J Mol Microbiol Biotechnol 24:1–11 [View Article][PubMed]
    [Google Scholar]
  27. Namba S. 2011; Phytoplasmas: a century of pioneering research. J Gen Plant Pathol 77:345–349 [View Article]
    [Google Scholar]
  28. Oshima K., Kakizawa S., Nishigawa H., Jung H. Y., Wei W., Suzuki S., Arashida R., Nakata D., Miyata S., other authors. 2004; Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 36:27–29 [View Article][PubMed]
    [Google Scholar]
  29. Saccardo F., Martini M., Palmano S., Ermacora P., Scortichini M., Loi N., Firrao G. 2012; Genome drafts of four phytoplasma strains of the ribosomal group 16SrIII. Microbiology 158:2805–2814 [View Article][PubMed]
    [Google Scholar]
  30. Siampour M., Izadpanah K., Galetto L., Salehi M., Marzachı C. 2013; Molecular characterization, phylogenetic comparison and serological relationship of the Imp protein of several ‘Candidatus Phytoplasma aurantifolia’ strains. Plant Pathol 62:452–459 [View Article]
    [Google Scholar]
  31. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., other authors. 2011; Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539 [View Article][PubMed]
    [Google Scholar]
  32. Simon D. M., Clarke N. A. C., McNeil B. A., Johnson I., Pantuso D., Dai L., Chai D., Zimmerly S. 2008; Group II introns in eubacteria and archaea: ORF-less introns and new varieties. RNA 14:1704–1713 [View Article][PubMed]
    [Google Scholar]
  33. Tran-Nguyen L. T. T., Kube M., Schneider B., Reinhardt R., Gibb K. S. 2008; Comparative genome analysis of “Candidatus Phytoplasma australiense” (subgroup tuf-Australia I; rp-A) and “Ca. Phytoplasma asteris” Strains OY-M and AY-WB. J Bacteriol 190:3979–3991 [View Article][PubMed]
    [Google Scholar]
  34. Wei W., Davis R. E., Jomantiene R., Zhao Y. 2008; Ancient, recurrent phage attacks and recombination shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution. Proc Natl Acad Sci U S A 105:11827–11832 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000133
Loading
/content/journal/micro/10.1099/mic.0.000133
Loading

Data & Media loading...

Most cited Most Cited RSS feed