1887

Abstract

Bacteria encode clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated genes (), which collectively form an RNA-guided adaptive immune system against invasive genetic elements. surveys have revealed that lactic acid bacteria harbour a prolific and diverse set of CRISPR-Cas systems. Thus, the natural evolutionary role of CRISPR-Cas systems may be investigated in these ecologically, industrially, scientifically and medically important microbes. In this study, 17 strains were investigated and 6 harboured a type II-A CRISPR-Cas system, with considerable diversity in array size and spacer content. Several of the spacers showed similarity to phage and plasmid sequences, which are typical targets of CRISPR-Cas immune systems. Aligning the protospacers facilitated inference of the protospacer adjacent motif sequence, determined to be 5′-NTAA-3′ flanking the 3′ end of the protospacer. The system in JV-V03 and NCK 1342 interfered with transforming plasmids containing sequences matching the most recently acquired CRISPR spacers in each strain. We report the distribution and function of a native type II-A CRISPR-Cas system in the commensal species . Collectively, these results open avenues for applications for bacteriophage protection and genome modification in , and contribute to the fundamental understanding of CRISPR-Cas systems in bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000129
2015-09-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/9/1752.html?itemId=/content/journal/micro/10.1099/mic.0.000129&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Azcarate-Peril M. A. , Altermann E. , Goh Y. J. , Tallon R. , Sanozky-Dawes R. B. , Pfeiler E. A. , O'Flaherty S. , Buck B. L. , Dobson A. , other authors . ( 2008;). Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol 74: 4610–4625 [CrossRef] [PubMed].
    [Google Scholar]
  3. Barrangou R. , Horvath P. . ( 2012;). CRISPR: new horizons in phage resistance and strain identification. Annu Rev Food Sci Technol 3: 143–162 [CrossRef] [PubMed].
    [Google Scholar]
  4. Barrangou R. , Marraffini L. A. . ( 2014;). CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54: 234–244 [CrossRef] [PubMed].
    [Google Scholar]
  5. Barrangou R. , Fremaux C. , Deveau H. , Richards M. , Boyaval P. , Moineau S. , Romero D. A. , Horvath P. . ( 2007;). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712 [CrossRef] [PubMed].
    [Google Scholar]
  6. Baugher J. L. , Durmaz E. , Klaenhammer T. R. . ( 2014;). Spontaneously induced prophages in Lactobacillus gasseri contribute to horizontal gene transfer. Appl Environ Microbiol 80: 3508–3517 [CrossRef] [PubMed].
    [Google Scholar]
  7. Bikard D. , Jiang W. , Samai P. , Hochschild A. , Zhang F. , Marraffini L. A. . ( 2013;). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41: 7429–7437 [CrossRef] [PubMed].
    [Google Scholar]
  8. Bondy-Denomy J. , Davidson A. R. . ( 2014;). To acquire or resist: the complex biological effects of CRISPR-Cas systems. Trends Microbiol 22: 218–225 [CrossRef] [PubMed].
    [Google Scholar]
  9. Breitbart M. , Haynes M. , Kelley S. , Angly F. , Edwards R. A. , Felts B. , Mahaffy J. M. , Mueller J. , Nulton J. , other authors . ( 2008;). Viral diversity and dynamics in an infant gut. Res Microbiol 159: 367–373 [CrossRef] [PubMed].
    [Google Scholar]
  10. Briner A. E. , Barrangou R . . ( 2014;). Lactobacillus buchneri genotyping on the basis of clustered regularly interspaced short palindromic repeat (CRISPR) locus diversity. Appl Environ Microbiol 80: 994–1001.[CrossRef]
    [Google Scholar]
  11. Briner A. E. , Donohoue P. D. , Gomaa A. A. , Selle K. , Slorach E. M. , Nye C. H. , Haurwitz R. E. , Beisel C. L. , May A. P. , Barrangou R. . ( 2014;). Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell 56: 333–339 [CrossRef] [PubMed].
    [Google Scholar]
  12. Brouns S. J. J. , Jore M. M. , Lundgren M. , Westra E. R. , Slijkhuis R. J. H. , Snijders A. P. L. , Dickman M. J. , Makarova K. S. , Koonin E. V. , van der Oost J. . ( 2008;). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960–964 [CrossRef] [PubMed].
    [Google Scholar]
  13. Casadaban M. J. , Cohen S. N. . ( 1980;). Analysis of gene control signals by DNA fusion and cloning in Escherichia coli . J Mol Biol 138: 179–207 [CrossRef] [PubMed].
    [Google Scholar]
  14. Chylinski K. , Le Rhun A. , Charpentier E. . ( 2013;). The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10: 726–737 [CrossRef] [PubMed].
    [Google Scholar]
  15. Chylinski K. , Makarova K. S. , Charpentier E. , Koonin E. V. . ( 2014;). Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42: 6091–6105 [CrossRef] [PubMed].
    [Google Scholar]
  16. Clark R. H. . ( 2001;). Distribution and strain polymorphisms in probiotic lactobacilli MS thesis, North Carolina State University, Raleigh, NC, USA.
    [Google Scholar]
  17. Coffey A. , Ross R. P. . ( 2002;). Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application. Antonie van Leeuwenhoek 82: 303–321 [CrossRef] [PubMed].
    [Google Scholar]
  18. Crowell D. . ( 1998;). Microbial analysis of human intestinal flora after feeding Lactobacillus acidophilus MS thesis, North Carolina State University, Raleigh, NC, USA.
    [Google Scholar]
  19. Delgado S. , Suárez A. , Mayo B. . ( 2007;). Dominant cultivable Lactobacillus species from the feces of healthy adults in northern Spain. Int Microbiol 10: 141–145.[PubMed].
    [Google Scholar]
  20. Deltcheva E. , Chylinski K. , Sharma C. M. , Gonzales K. , Chao Y. , Pirzada Z. A. , Eckert M. R. , Vogel J. , Charpentier E. . ( 2011;). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471: 602–607 [CrossRef] [PubMed].
    [Google Scholar]
  21. Deveau H. , Barrangou R. , Garneau J. E. , Labonté J. , Fremaux C. , Boyaval P. , Romero D. A. , Horvath P. , Moineau S. . ( 2008;). Phage response to CRISPR-encoded resistance in Streptococcus thermophilus . J Bacteriol 190: 1390–1400 [CrossRef] [PubMed].
    [Google Scholar]
  22. Doudna J. A. , Charpentier E. . ( 2014;). The new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096 [CrossRef] [PubMed].
    [Google Scholar]
  23. Esvelt K. M. , Mali P. , Braff J. L. , Moosburner M. , Yaung S. J. , Church G. M. . ( 2013;). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10: 1116–1121 [CrossRef] [PubMed].
    [Google Scholar]
  24. Garneau J. E. , Dupuis M.-È. , Villion M. , Romero D. A. , Barrangou R. , Boyaval P. , Fremaux C. , Horvath P. , Magadán A. H. , Moineau S. . ( 2010;). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67–71 [CrossRef] [PubMed].
    [Google Scholar]
  25. Gasiunas G. , Barrangou R. , Horvath P. , Siksnys V. . ( 2012;). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109: E2579–E2586 [CrossRef] [PubMed].
    [Google Scholar]
  26. Gomaa A. A. , Klumpe H. E. , Luo M. L. , Selle K. , Barrangou R. , Beisel C. L. . ( 2014;). Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio 5: e00928-13 [CrossRef] [PubMed].
    [Google Scholar]
  27. Grissa I. , Vergnaud G. , Pourcel C. . ( 2007a;). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8: 172 [CrossRef] [PubMed].
    [Google Scholar]
  28. Grissa I. , Vergnaud G. , Pourcel C. . ( 2007b;). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35: (Web Server), W52–W57 [CrossRef] [PubMed].
    [Google Scholar]
  29. Hanahan D. . ( 1985;). Techniques for Transformation of Escherchia coli Oxford: IRL Press;.
    [Google Scholar]
  30. Healy M. , Huong J. , Bittner T. , Lising M. , Frye S. , Raza S. , Schrock R. , Manry J. , Renwick A. , other authors . ( 2005;). Microbial DNA typing by automated repetitive-sequence-based PCR. J Clin Microbiol 43: 199–207 [CrossRef] [PubMed].
    [Google Scholar]
  31. Horvath P. , Romero D. A. , Coûté-Monvoisin A.-C. , Richards M. , Deveau H. , Moineau S. , Boyaval P. , Fremaux C. , Barrangou R. . ( 2008;). Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus . J Bacteriol 190: 1401–1412 [CrossRef] [PubMed].
    [Google Scholar]
  32. Horvath P. , Coûté-Monvoisin A.-C. , Romero D. A. , Boyaval P. , Fremaux C. , Barrangou R. . ( 2009;). Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol 131: 62–70 [CrossRef] [PubMed].
    [Google Scholar]
  33. Ismail E. A. , Neve H. , Geis A. , Heller K. J. . ( 2009;). Characterization of temperate Lactobacillus gasseri phage LgaI and its impact as prophage on autolysis of its lysogenic host strains. Curr Microbiol 58: 648–653 [CrossRef] [PubMed].
    [Google Scholar]
  34. Jiang W. , Maniv I. , Arain F. , Wang Y. , Levin B. R. , Marraffini L. A. . ( 2013;). Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLoS Genet 9: e1003844 [CrossRef] [PubMed].
    [Google Scholar]
  35. Jinek M. , Chylinski K. , Fonfara I. , Hauer M. , Doudna J. A. , Charpentier E. . ( 2012;). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821 [CrossRef] [PubMed].
    [Google Scholar]
  36. Kok J. , van der Vossen J. M. , Venema G. . ( 1984;). Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli . Appl Environ Microbiol 48: 726–731.[PubMed].
    [Google Scholar]
  37. Kullen M. J. , Sanozky-Dawes R. B. , Crowell D. C. , Klaenhammer T. R. . ( 2000;). Use of the DNA sequence of variable regions of the 16S rRNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. J Appl Microbiol 89: 511–516 [CrossRef] [PubMed].
    [Google Scholar]
  38. Levin B. R. , Moineau S. , Bushman M. , Barrangou R. . ( 2013;). The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity. PLoS Genet 9: e1003312 [CrossRef] [PubMed].
    [Google Scholar]
  39. Luo M. L. , Mullis A. S. , Leenay R. T. , Beisel C. L. . ( 2015;). Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res 43: 674–681 [CrossRef] [PubMed].
    [Google Scholar]
  40. Makarova K. S. , Haft D. H. , Barrangou R. , Brouns S. J. J. , Charpentier E. , Horvath P. , Moineau S. , Mojica F. J. M. , Wolf Y. I. , other authors . ( 2011;). Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9: 467–477 [CrossRef] [PubMed].
    [Google Scholar]
  41. Marraffini L. A. , Sontheimer E. J. . ( 2008;). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 1843–1845 [CrossRef] [PubMed].
    [Google Scholar]
  42. Minot S. , Sinha R. , Chen J. , Li H. , Keilbaugh S. A. , Wu G. D. , Lewis J. D. , Bushman F. D. . ( 2011;). The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21: 1616–1625 [CrossRef] [PubMed].
    [Google Scholar]
  43. Mojica F. J. M. , Díez-Villaseñor C. , García-Martínez J. , Almendros C. . ( 2009;). Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155: 733–740 [CrossRef] [PubMed].
    [Google Scholar]
  44. Paez-Espino D. , Morovic W. , Sun C. L. , Thomas B. C. , Ueda K. , Stahl B. , Barrangou R. , Banfield J. F. . ( 2013;). Strong bias in the bacterial CRISPR elements that confer immunity to phage. Nat Commun 4: 1430 [CrossRef] [PubMed].
    [Google Scholar]
  45. Raya R. R. , Kleeman E. G. , Luchansky J. B. , Klaenhammer T. R. . ( 1989;). Characterization of the temperate bacteriophage phi adh and plasmid transduction in Lactobacillus acidophilus ADH. Appl Environ Microbiol 55: 2206–2213.[PubMed].
    [Google Scholar]
  46. Rodrigues da Cunha L. , Fortes Ferreira C. L. L. , Durmaz E. , Goh Y. J. , Sanozky-Dawes R. , Klaenhammer T. . ( 2012;). Characterization of Lactobacillus gasseri isolates from a breast-fed infant. Gut Microbes 3: 15–24 [CrossRef] [PubMed].
    [Google Scholar]
  47. Sapranauskas R. , Gasiunas G. , Fremaux C. , Barrangou R. , Horvath P. , Siksnys V. . ( 2011;). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli . Nucleic Acids Res 39: 9275–9282 [CrossRef] [PubMed].
    [Google Scholar]
  48. Selle K. , Barrangou R. . ( 2015;). Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol 23: 225–232 [CrossRef] [PubMed].
    [Google Scholar]
  49. Selle K. , Klaenhammer T. R. . ( 2013;). Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiol Rev 37: 915–935 [CrossRef] [PubMed].
    [Google Scholar]
  50. Semenova E. , Jore M. M. , Datsenko K. A. , Semenova A. , Westra E. R. , Wanner B. , van der Oost J. , Brouns S. J. J. , Severinov K. . ( 2011;). Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A 108: 10098–10103 [CrossRef] [PubMed].
    [Google Scholar]
  51. Shariat N. , DiMarzio M. J. , Yin S. , Dettinger L. , Sandt C. H. , Lute J. R. , Barrangou R. , Dudley E. G. . ( 2013;). The combination of CRISPR-MVLST and PFGE provides increased discriminatory power for differentiating human clinical isolates of Salmonella enterica subsp. enterica serovar Enteritidis. Food Microbiol 34: 164–173 [CrossRef] [PubMed].
    [Google Scholar]
  52. Sun C. L. , Barrangou R. , Thomas B. C. , Horvath P. , Fremaux C. , Banfield J. F. . ( 2013;). Phage mutations in response to CRISPR diversification in a bacterial population. Environ Microbiol 15: 463–470 [CrossRef] [PubMed].
    [Google Scholar]
  53. Walker D. C. , Aoyama K. , Klaenhammer T. R. . ( 1996;). Electrotransformation of Lactobacillus acidophilus group A1. FEMS Microbiol Lett 138: 233–237 [CrossRef] [PubMed].
    [Google Scholar]
  54. Wiedenheft B. , van Duijn E. , Bultema J. B. , Waghmare S. P. , Zhou K. , Barendregt A. , Westphal W. , Heck A. J. R. , Boekema E. J. , other authors . ( 2011;). RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc Natl Acad Sci U S A 108: 10092–10097 [CrossRef] [PubMed].
    [Google Scholar]
  55. Young J. C. , Dill B. D. , Pan C. , Hettich R. L. , Banfield J. F. , Shah M. , Fremaux C. , Horvath P. , Barrangou R. , Verberkmoes N. C. . ( 2012;). Phage-induced expression of CRISPR-associated proteins is revealed by shotgun proteomics in Streptococcus thermophilus . PLoS One 7: e38077 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000129
Loading
/content/journal/micro/10.1099/mic.0.000129
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error