1887

Abstract

The group I pilin category is the most common type of type IVa pilus produced by . The lateral surfaces of these pili are characterized by the presence of closely spaced, covalently attached O-antigen repeating units. The current work was conducted to investigate the pilin glycan's effect on pilus solubility and function. Culture supernatant fluids containing fully, partially and non-glycosylated group I pili were tested for solubility in the presence of ammonium sulfate. These results showed that while pili expressing three or four sugars were highly soluble under all conditions, those with fewer than three were insoluble under the lowest salt concentrations tested. A representative of the group II pili also showed low solubility when assayed under these same conditions. Reduced solubility suggested an increased pilus surface hydrophobicity, which was supported by protein modelling. While having no effect on the WT strain, an ionic strength found at many host infection sites inhibited surface and subsurface twitching motility of strain 1244G7, an isogenic mutant unable to glycosylate pilin. This effect was reversed by mutant complementation. Twitching motility of strain PA103, which produces group II pili, was also inhibited by ionic strengths which influenced the mutant 1244 strain. We suggest that the group I pilin glycan may, therefore, be beneficial to this organism specifically for optimal pilus functioning at the many host disease sites with ionic strengths comparable to those tested here.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000128
2015-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/9/1780.html?itemId=/content/journal/micro/10.1099/mic.0.000128&mimeType=html&fmt=ahah

References

  1. Brinton C. C. Jr . ( 1965;). structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci 27: ((8 Series II)), 1003–1054 [CrossRef] [PubMed].
    [Google Scholar]
  2. Burrows L. L. . ( 2012;). Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol 66: 493–520 [CrossRef] [PubMed].
    [Google Scholar]
  3. Castric P. . ( 1995;). pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. Microbiology 141: 1247–1254 [CrossRef] [PubMed].
    [Google Scholar]
  4. Castric P. A. , Deal C. D. . ( 1994;). Differentiation of Pseudomonas aeruginosa pili based on sequence and B-cell epitope analyses. Infect Immun 62: 371–376.
    [Google Scholar]
  5. Castric P. A. , Sidberry H. F. , Sadoff J. C. . ( 1989;). Cloning and sequencing of the Pseudomonas aeruginosa 1244 pilin structural gene. Mol Gen Genet 216: 75–80 [CrossRef] [PubMed].
    [Google Scholar]
  6. Castric P. , Cassels F. J. , Carlson R. W. . ( 2001;). Structural characterization of the Pseudomonas aeruginosa 1244 pilin glycan. J Biol Chem 276: 26479–26485 [CrossRef] [PubMed].
    [Google Scholar]
  7. Comer J. E. , Marshall M. A. , Blanch V. J. , Deal C. D. , Castric P. . ( 2002;). Identification of the Pseudomonas aeruginosa 1244 pilin glycosylation site. Infect Immun 70: 2837–2845 [CrossRef] [PubMed].
    [Google Scholar]
  8. Comolli J. C. , Hauser A. R. , Waite L. , Whitchurch C. B. , Mattick J. S. , Engel J. N. . ( 1999;). Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect Immun 67: 3625–3630 [PubMed].
    [Google Scholar]
  9. Craig L. , Pique M. E. , Tainer J. A. . ( 2004;). Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2: 363–378 [CrossRef] [PubMed].
    [Google Scholar]
  10. de Bruijn F. J. , Lupski J. R. . ( 1984;). The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids—a review. Gene 27: 131–149 [CrossRef] [PubMed].
    [Google Scholar]
  11. DiGiandomenico A. , Matewish M. J. , Bisaillon A. , Stehle J. R. , Lam J. S. , Castric P. . ( 2002;). Glycosylation of Pseudomonas aeruginosa 1244 pilin: glycan substrate specificity. Mol Microbiol 46: 519–530 [CrossRef] [PubMed].
    [Google Scholar]
  12. Farinha M. A. , Conway B. D. , Glasier L. M. G. , Ellert N. W. , Irvin R. T. , Sherburne R. , Paranchych W. . ( 1994;). Alteration of the pilin adhesin of Pseudomonas aeruginosa PAO results in normal pilus biogenesis but a loss of adherence to human pneumocyte cells and decreased virulence in mice. Infect Immun 62: 4118–4123.
    [Google Scholar]
  13. Figurski D. H. , Helinski D. R. . ( 1979;). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76: 1648–1652 [CrossRef] [PubMed].
    [Google Scholar]
  14. Fletcher E. L. , Weissman B. A. , Efron N. , Fleiszig S. M. J. , Curcio A. J. , Brennan N. A. . ( 1993;). The role of pili in the attachment of Pseudomonas aeruginosa to unworn hydrogel contact lenses. Curr Eye Res 12: 1067–1071 [CrossRef] [PubMed].
    [Google Scholar]
  15. Furst D. M. . ( 2005;). Pseudomonas aeruginosa 1244 piliation: environmental signals and regulation Master of Science thesis Pittsburgh, PA, USA: Duquesne University;.
    [Google Scholar]
  16. Fürste J. P. , Pansegrau W. , Frank R. , Blöcker H. , Scholz P. , Bagdasarian M. , Lanka E. . ( 1986;). Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene 48: 119–131 [CrossRef] [PubMed].
    [Google Scholar]
  17. Giltner C. L. , van Schaik E. J. , Audette G. F. , Kao D. , Hodges R. S. , Hassett D. J. , Irvin R. T. . ( 2006;). The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces. Mol Microbiol 59: 1083–1096 [CrossRef] [PubMed].
    [Google Scholar]
  18. Goldberg J. B. , Hatano K. , Meluleni G. S. , Pier G. B. . ( 1992;). Cloning and surface expression of Pseudomonas aeruginosa O antigen in Escherichia coli . Proc Natl Acad Sci U S A 89: 10716–10720 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hahn H. P. . ( 1997;). The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa—a review. Gene 192: 99–108 [CrossRef] [PubMed].
    [Google Scholar]
  20. Harvey H. , Kus J. V. , Tessier L. , Kelly J. , Burrows L. L. . ( 2011;). Pseudomonas aeruginosa d-arabinofuranose biosynthetic pathway and its role in type IV pilus assembly. J Biol Chem 286: 28128–28137 [CrossRef] [PubMed].
    [Google Scholar]
  21. Henrichsen J. , Froholm L. O. , Bovre K. . ( 1972;). Studies on bacterial surface translocation. 2. Correlation of twitching motility and fimbriation in colony variants of Moraxella nonliquefaciens, M. bovis, and M. kingii . Acta Pathol Microbiol Scand B Microbiol Immunol 80: 445–452.
    [Google Scholar]
  22. Horzempa J. , Comer J. E. , Davis S. A. , Castric P. . ( 2006;). Glycosylation substrate specificity of Pseudomonas aeruginosa 1244 pilin. J Biol Chem 281: 1128–1136 [CrossRef] [PubMed].
    [Google Scholar]
  23. Humphries R. M. , Griener T. P. , Vogt S. L. , Mulvey G. L. , Raivio T. , Donnenberg M. S. , Kitov P. I. , Surette M. , Armstrong G. D. . ( 2010;). N-Acetyllactosamine-induced retraction of bundle-forming pili regulates virulence-associated gene expression in enteropathogenic Escherichia coli . Mol Microbiol 76: 1111–1126 [CrossRef] [PubMed].
    [Google Scholar]
  24. Joris L. , Dab I. , Quinton P. M. . ( 1993;). Elemental composition of human airway surface fluid in healthy and diseased airways. Am Rev Respir Dis 148: 1633–1637 [CrossRef] [PubMed].
    [Google Scholar]
  25. Kelley L. A. , Sternberg M. J. E. . ( 2009;). Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4: 363–371 [CrossRef] [PubMed].
    [Google Scholar]
  26. Knirel Y. A. . ( 1990;). Polysaccharide antigens of Pseudomonas aeruginosa . Crit Rev Microbiol 17: 273–304 [CrossRef] [PubMed].
    [Google Scholar]
  27. Knirel Y. A. , Bystrova O. V. , Kocharova N. A. , Zähringer U. , Pier G. B. . ( 2006;). Conserved and variable structural features in the lipopolysaccharide of Pseudomonas aeruginosa . J Endotoxin Res 12: 324–336 [CrossRef] [PubMed].
    [Google Scholar]
  28. Knowles M. R. , Robinson J. M. , Wood R. E. , Pue C. A. , Mentz W. M. , Wager G. C. , Gatzy J. T. , Boucher R. C. . ( 1997;). Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and disease-control subjects. J Clin Invest 100: 2588–2595 [CrossRef] [PubMed].
    [Google Scholar]
  29. Kus J. V. , Tullis E. , Cvitkovitch D. G. , Burrows L. L. . ( 2004;). Significant differences in type IV pilin allele distribution among Pseudomonas aeruginosa isolates from cystic fibrosis (CF) versus non-CF patients. Microbiology 150: 1315–1326 [CrossRef] [PubMed].
    [Google Scholar]
  30. Lam J. S. , Taylor V. L. , Islam S. T. , Hao Y. , Kocíncová D. . ( 2011;). Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front Microbiol 2: 118 [CrossRef] [PubMed].
    [Google Scholar]
  31. Landry J. S. , Eidelman D. H. . ( 2001;). Airway surface liquid: end of the controversy?. J Gen Physiol 117: 419–422 [CrossRef] [PubMed].
    [Google Scholar]
  32. Liu P. V. . ( 1973;). Exotoxins of Pseudomonas aeruginosa. I. Factors that influence the production of exotoxin A. J Infect Dis 128: 506–513 [CrossRef] [PubMed].
    [Google Scholar]
  33. Maas A. H. J. , Siggaard-Andersen O. , Weisberg H. F. , Zijlstra W. G. . ( 1985;). Ion-selective electrodes for sodium and potassium: a new problem of what is measured and what should be reported. Clin Chem 31: 482–485.
    [Google Scholar]
  34. Mattick J. S. , Whitchurch C. B. , Alm R. A. . ( 1996;). The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa—a review. Gene 179: 147–155 [CrossRef] [PubMed].
    [Google Scholar]
  35. McMichael J. C. . ( 1992;). Bacterial differentiation within Moraxella bovis colonies growing at the interface of the agar medium with the Petri dish. J Gen Microbiol 138: 2687–2695 [CrossRef] [PubMed].
    [Google Scholar]
  36. Nunn D. , Bergman S. , Lory S. . ( 1990;). Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. J Bacteriol 172: 2911–2919.
    [Google Scholar]
  37. Ramboarina S. , Fernandes P. J. , Daniell S. , Islam S. , Simpson P. , Frankel G. , Booy F. , Donnenberg M. S. , Matthews S. . ( 2005;). Structure of the bundle-forming pilus from enteropathogenic Escherichia coli . J Biol Chem 280: 40252–40260 [CrossRef] [PubMed].
    [Google Scholar]
  38. Ramphal R. , Sadoff J. C. , Pyle M. , Silipigni J. D. . ( 1984;). Role of pili in the adherence of Pseudomonas aeruginosa to injured tracheal epithelium. Infect Immun 44: 38–40.
    [Google Scholar]
  39. Ruvkun G. B. , Ausubel F. M. . ( 1981;). A general method for site-directed mutagenesis in prokaryotes. Nature 289: 85–88 [CrossRef] [PubMed].
    [Google Scholar]
  40. Saiman L. , Sadoff J. , Prince A. . ( 1989;). Cross-reactivity of Pseudomonas aeruginosa antipilin monoclonal antibodies with heterogeneous strains of P. aeruginosa and Pseudomonas cepacia . Infect Immun 57: 2764–2770.
    [Google Scholar]
  41. Schmidhauser T. J. , Helinski D. R. . ( 1985;). Regions of broad-host-range plasmid RK2 involved in replication and stable maintenance in nine species of gram-negative bacteria. J Bacteriol 164: 446–455.
    [Google Scholar]
  42. Semmler A. B. T. , Whitchurch C. B. , Mattick J. S. . ( 1999;). A re-examination of twitching motility in Pseudomonas aeruginosa . Microbiology 145: 2863–2873.[CrossRef]
    [Google Scholar]
  43. Sidberry H. , Kaufman B. , Wright D. C. , Sadoff J. . ( 1985;). Immunoenzymatic analysis by monoclonal antibodies of bacterial lipopolysaccharides after transfer to nitrocellulose. J Immunol Methods 76: 299–305 [CrossRef] [PubMed].
    [Google Scholar]
  44. Silipigni-Fusco J. . ( 1987;). Studies on the role of somatic pili as virulence and immunity factors in the pathogenicity of Pseudomonas aeruginosa PhD thesis Pittsburgh, PA, USA: University of Pittsburgh;.
    [Google Scholar]
  45. Singh P. , Carraher C. , Schwarzbauer J. E. . ( 2010;). Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol 26: 397–419 [CrossRef] [PubMed].
    [Google Scholar]
  46. Smedley J. G. III , Jewell E. , Roguskie J. , Horzempa J. , Syboldt A. , Stolz D. B. , Castric P. . ( 2005;). Influence of pilin glycosylation on Pseudomonas aeruginosa 1244 pilus function. Infect Immun 73: 7922–7931 [CrossRef] [PubMed].
    [Google Scholar]
  47. Voisin S. , Kus J. V. , Houliston S. , St-Michael F. , Watson D. , Cvitkovitch D. G. , Kelly J. , Brisson J.-R. , Burrows L. L. . ( 2007;). Glycosylation of Pseudomonas aeruginosa strain Pa5196 type IV pilins with mycobacterium-like α-1,5-linked d-Araf oligosaccharides. J Bacteriol 189: 151–159 [CrossRef] [PubMed].
    [Google Scholar]
  48. Woods D. E. , Straus D. C. , Johanson W. G. Jr , Berry V. K. , Bass J. A. . ( 1980;). Role of pili in adherence of Pseudomonas aeruginosa to mammalian buccal epithelial cells. Infect Immun 29: 1146–1151.
    [Google Scholar]
  49. Yelton M. M. , Hamer J. E. , de Souza E. R. , Mullaney E. J. , Timberlake W. E. . ( 1983;). Developmental regulation of the Aspergillus nidulans trpC gene. Proc Natl Acad Sci U S A 80: 7576–7580 [CrossRef] [PubMed].
    [Google Scholar]
  50. Zolfaghar I. , Evans D. J. , Fleiszig S. M. J. . ( 2003;). Twitching motility contributes to the role of pili in corneal infection caused by Pseudomonas aeruginosa . Infect Immun 71: 5389–5393 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000128
Loading
/content/journal/micro/10.1099/mic.0.000128
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error