1887

Abstract

Lipases are interesting enzymes, which contribute important roles in maintaining lipid homeostasis and cellular metabolisms. Using available genome data, seven lipase families of oleaginous and non-oleaginous yeast and fungi were categorized based on the similarity of their amino acid sequences and conserved structural domains. Of them, triacylglycerol lipase (patatin-domain-containing protein) and steryl ester hydrolase (abhydro_lipase-domain-containing protein) families were ubiquitous enzymes found in all species studied. The two essential lipases rendered signature characteristics of integral membrane proteins that might be targeted to lipid monolayer particles. At least one of the extracellular lipase families existed in each species of yeast and fungi. We found that the diversity of lipase families and the number of genes in individual families of oleaginous strains were greater than those identified in non-oleaginous species, which might play a role in nutrient acquisition from surrounding hydrophobic substrates and attribute to their obese phenotype. The gene/enzyme catalogue and relevant informative data of the lipases provided by this study are not only valuable toolboxes for investigation of the biological role of these lipases, but also convey potential in various industrial applications.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000127
2015-08-01
2019-09-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/8/1613.html?itemId=/content/journal/micro/10.1099/mic.0.000127&mimeType=html&fmt=ahah

References

  1. Ageitos J.M., Vallejo J.A., Veiga-Crespo P., Villa T.G.. ( 2011;). Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90: 1219–1227 [CrossRef] [PubMed].
    [Google Scholar]
  2. Albertsson A.C., Varma I.K.. ( 2003;). Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4: 1466–1486 [CrossRef] [PubMed].
    [Google Scholar]
  3. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J.. ( 1997;). Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402 [CrossRef] [PubMed].
    [Google Scholar]
  4. Anderson E.M., Larsson K.M., Kirk O.. ( 1998;). One biocatalyst-many applications: the use of Candida antarctica B-lipase in organic synthesis. Biocatal Biotransformation 16: 181–204 [CrossRef].
    [Google Scholar]
  5. Aravindan R., Anbumathi P., Viruthagiri T.. ( 2007;). Lipase applications in food industry. Ind J Biotechnol 6: 141–158.
    [Google Scholar]
  6. Arpigny J.L., Jaeger K.E.. ( 1999;). Bacterial lipolytic enzymes: classification and properties. Biochem J 343: 177–183 [CrossRef] [PubMed].
    [Google Scholar]
  7. Athenstaedt K., Daum G.. ( 2003;). YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J Biol Chem 278: 23317–23323 [CrossRef] [PubMed].
    [Google Scholar]
  8. Athenstaedt K., Daum G.. ( 2005;). Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles. J Biol Chem 280: 37301–37309 [CrossRef] [PubMed].
    [Google Scholar]
  9. Athenstaedt K., Daum G.. ( 2006;). The life cycle of neutral lipids: synthesis, storage and degradation. Cell Mol Life Sci 63: 1355–1369 [CrossRef] [PubMed].
    [Google Scholar]
  10. Athenstaedt K., Zweytick D., Jandrositz A., Kohlwein S.D., Daum G.. ( 1999;). Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 181: 6441–6448 [PubMed].
    [Google Scholar]
  11. Ayciriex S., Le Guédard M., Camougrand N., Velours G., Schoene M., Leon S., Wattelet-Boyer V., Dupuy J.W., Shevchenko A., other authors. ( 2012;). YPR139c/LOA1 encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets and involved in TAG homeostasis. Mol Biol Cell 23: 233–246 [CrossRef] [PubMed].
    [Google Scholar]
  12. Brígida A.I.S., Amaral P.F.F., Coelho M.A.Z., Gonçalves L.R.B.. ( 2014;). Lipase from Yarrowia lipolytica: production, characterization and application as an industrial biocatalyst. J Mol Catal, B Enzym 101: 148–158 [CrossRef].
    [Google Scholar]
  13. Burroughs A.M., Allen K.N., Dunaway-Mariano D., Aravind L.. ( 2006;). Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes. J Mol Biol 361: 1003–1034 [CrossRef] [PubMed].
    [Google Scholar]
  14. Cammarota M.C., Freire D.M.G.. ( 2006;). A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresour Technol 97: 2195–2210 [CrossRef] [PubMed].
    [Google Scholar]
  15. Certik M., Shimizu S.. ( 1999;). Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87: 1–14 [CrossRef] [PubMed].
    [Google Scholar]
  16. Converti A., Del Borghi A., Gandolfi R., Lodi A., Molinari F., Palazzi E.. ( 2002;). Reactivity and stability of mycelium-bound carboxylesterase from Aspergillus oryzae. Biotechnol Bioeng 77: 232–237 [CrossRef] [PubMed].
    [Google Scholar]
  17. Daum G., Wagner A., Czabany T., Athenstaedt K.. ( 2007;). Dynamics of neutral lipid storage and mobilization in yeast. Biochimie 89: 243–248 [CrossRef] [PubMed].
    [Google Scholar]
  18. De Maria L., Vind J., Oxenbøll K.M., Svendsen A., Patkar S.. ( 2007;). Phospholipases and their industrial applications. Appl Microbiol Biotechnol 74: 290–300 [CrossRef] [PubMed].
    [Google Scholar]
  19. Donaghy J., McKay A.M.. ( 1992;). Extracellular carboxylesterase activity of Fusarium graminearum. Appl Microbiol Biotechnol 37: 742–744 [CrossRef].
    [Google Scholar]
  20. Dröge M.J., Bos R., Boersma Y.L., Quax W.J.. ( 2005;). Comparison and functional characterisation of three homologous intracellular carboxylesterases of Bacillus subtilis. J Mol Catal, B Enzym 32: 261–270 [CrossRef].
    [Google Scholar]
  21. Farn J.L., Strugnell R.A., Hoyne P.A., Michalski W.P., Tennent J.M.. ( 2001;). Molecular characterization of a secreted enzyme with phospholipase B activity from Moraxella bovis. J Bacteriol 183: 6717–6720 [CrossRef] [PubMed].
    [Google Scholar]
  22. Fei W., Shui G., Zhang Y., Krahmer N., Ferguson C., Kapterian T.S., Lin R.C., Dawes I.W., Brown A.J., other authors. ( 2011;). A role for phosphatidic acid in the formation of supersized lipid droplets. PLoS Genet 7: e1002201 [CrossRef] [PubMed].
    [Google Scholar]
  23. Fickers P., Nicaud J.M., Gaillardin C., Destain J., Thonart P.. ( 2004;). Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. J Appl Microbiol 96: 742–749 [CrossRef] [PubMed].
    [Google Scholar]
  24. Fickers P., Fudalej F., Le Dall M.T., Casaregola S., Gaillardin C., Thonart P., Nicaud J.M.. ( 2005a;). Identification and characterisation of LIP7 LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genet Biol 42: 264–274 [CrossRef] [PubMed].
    [Google Scholar]
  25. Fickers P., Benetti P.H., Waché Y., Marty A., Mauersberger S., Smit M.S., Nicaud J.M.. ( 2005b;). Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5: 527–543 [CrossRef] [PubMed].
    [Google Scholar]
  26. Fickers P., Marty A., Nicaud J.M.. ( 2011;). The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol Adv 29: 632–644 [CrossRef] [PubMed].
    [Google Scholar]
  27. Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D., Bairoch A.. ( 2003;). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31: 3784–3788 [CrossRef] [PubMed].
    [Google Scholar]
  28. Goswami D., Basu J.K., De S.. ( 2013;). Lipase applications in oil hydrolysis with a case study on castor oil: a review. Crit Rev Biotechnol 33: 81–96 [CrossRef] [PubMed].
    [Google Scholar]
  29. Grillitsch K., Daum G.. ( 2011;). Triacylglycerol lipases of the yeast. Front Biol 6: 219–230.
    [Google Scholar]
  30. Ham H.J., Rho H.J., Shin S.K., Yoon H.J.. ( 2010;). The TGL2 gene of Saccharomyces cerevisiae encodes an active acylglycerol lipase located in the mitochondria. J Biol Chem 285: 3005–3013 [CrossRef] [PubMed].
    [Google Scholar]
  31. Hama S., Tamalampudi S., Fukumizu T., Miura K., Yamaji H., Kondo A., Fukuda H.. ( 2006;). Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. J Biosci Bioeng 101: 328–333 [CrossRef] [PubMed].
    [Google Scholar]
  32. Hama S., Yamaji H., Fukumizu T., Numata T., Tamalampudi S., Kondo A., Noda H., Fukuda H.. ( 2007;). Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 34: 273–278 [CrossRef].
    [Google Scholar]
  33. Hasan F., Shah A.A., Hameed A.. ( 2006;). Industrial applications of microbial lipases. Enzyme Microb Technol 39: 235–251 [CrossRef].
    [Google Scholar]
  34. Holm C.. ( 2003;). Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans 31: 1120–1124 [CrossRef] [PubMed].
    [Google Scholar]
  35. Holmquist M.. ( 2000;). Alpha/beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr Protein Pept Sci 1: 209–235 [CrossRef] [PubMed].
    [Google Scholar]
  36. Jandrositz A., Petschnigg J., Zimmermann R., Natter K., Scholze H., Hermetter A., Kohlwein S.D., Leber R.. ( 2005;). The lipid droplet enzyme Tgl1p hydrolyzes both steryl esters and triglycerides in the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 1735: 50–58 [CrossRef] [PubMed].
    [Google Scholar]
  37. Kartal F., Kilinç A., Timur S.. ( 2007;). Lipase biosensor for tributyrin and pesticide detection. Int J Environ Anal Chem 87: 715–0722 [CrossRef].
    [Google Scholar]
  38. Katoh K., Standley D.M.. ( 2013;). mafft multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30: 772–780 [CrossRef] [PubMed].
    [Google Scholar]
  39. Keng P.S., Basri M., Zakaria M.R.S., Abdul Rahman M.B., Ariff A.B., Abdul Rahman R.N.Z., Salleh A.B.. ( 2009;). Newly synthesized palm esters for cosmetic industry. Ind Crops Prod 29: 37–44 [CrossRef].
    [Google Scholar]
  40. Kienesberger P.C., Oberer M., Lass A., Zechner R.. ( 2009;). Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J Lipid Res 50: S63–S68 [CrossRef] [PubMed].
    [Google Scholar]
  41. Köffel R., Schneiter R.. ( 2006;). Yeh1 constitutes the major steryl ester hydrolase under heme-deficient conditions in Saccharomyces cerevisiae. Eukaryot Cell 5: 1018–1025 [CrossRef] [PubMed].
    [Google Scholar]
  42. Köffel R., Tiwari R., Falquet L., Schneiter R.. ( 2005;). The Saccharomyces cerevisiae YLL012/YEH1 YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis. Mol Cell Biol 25: 1655–1668 [CrossRef] [PubMed].
    [Google Scholar]
  43. Köhler G.A., Brenot A., Haas-Stapleton E., Agabian N., Deva R., Nigam S.. ( 2006;). Phospholipase A2 and phospholipase B activities in fungi. Biochim Biophys Acta 1761: 1391–1399 [CrossRef] [PubMed].
    [Google Scholar]
  44. Kohlwein S.D.. ( 2010;). Triacylglycerol homeostasis: insights from yeast. J Biol Chem 285: 15663–15667 [CrossRef] [PubMed].
    [Google Scholar]
  45. Kohlwein S.D., Veenhuis M., van der Klei I.J.. ( 2013;). Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat—store ’em up or burn 'em down. Genetics 193: 1–50 [CrossRef] [PubMed].
    [Google Scholar]
  46. Kraemer F.B., Shen W.J.. ( 2002;). Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res 43: 1585–1594 [CrossRef] [PubMed].
    [Google Scholar]
  47. Lai C.C., Zullaikah S., Vali S.R., Ju Y.H.. ( 2005;). Lipase-catalyzed production of biodiesel from rice bran oil. J Chem Technol Biotechnol 80: 331–337 [CrossRef].
    [Google Scholar]
  48. Lanciotti R., Gianotti A., Baldi D., Angrisani R., Suzzi G., Mastrocola D., Guerzoni M.E.. ( 2005;). Use of Yarrowia lipolytica strains for the treatment of olive mill wastewater. Bioresour Technol 96: 317–322 [CrossRef] [PubMed].
    [Google Scholar]
  49. Laoteng K., Čertík M., Cheevadhanarak S.. ( 2011;). Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi. Chemical Papers 65: 97–103 [CrossRef].
    [Google Scholar]
  50. Liu W.S., Pan X.X., Jia B., Zhao H.Y., Xu L., Liu Y., Yan Y.J.. ( 2010;). Surface display of active lipases Lip7 and Lip8 from Yarrowia lipolytica on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88: 885–891 [CrossRef] [PubMed].
    [Google Scholar]
  51. López del Castillo-Lozano M., Delile A., Spinnler H.E., Bonnarme P., Landaud S.. ( 2007;). Comparison of volatile sulphur compound production by cheese-ripening yeasts from methionine and methionine-cysteine mixtures. Appl Microbiol Biotechnol 75: 1447–1454 [CrossRef] [PubMed].
    [Google Scholar]
  52. Low J.K., Wilkins M.R.. ( 2012;). Protein arginine methylation in Saccharomyces cerevisiae. FEBS J 279: 4423–4443 [CrossRef] [PubMed].
    [Google Scholar]
  53. Marek A., Bednarski W.. ( 1996;). Some factors affecting lipase production by yeasts and filamentous fungi. Biotechnol Lett 18: 1155–1160 [CrossRef].
    [Google Scholar]
  54. Markowitz V.M., Mavromatis K., Ivanova N.N., Chen I.M., Chu K., Kyrpides N.C.. ( 2009;). IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25: 2271–2278 [CrossRef] [PubMed].
    [Google Scholar]
  55. McKay A.M.. ( 1993;). Microbial carboxylic ester hydrolases (EC 3.1.1) in food biotechnology. Lett Appl Microbiol 16: 1–6 [CrossRef].
    [Google Scholar]
  56. Meng X., Yang J., Xu X., Zhang L., Nie Q., Xian M.. ( 2009;). Biodiesel production from oleaginous microorganisms. Renew Energy 34: 1–5 [CrossRef].
    [Google Scholar]
  57. Mhetras N.C., Bastawde K.B., Gokhale D.V.. ( 2009;). Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207. Bioresour Technol 100: 1486–1490 [CrossRef] [PubMed].
    [Google Scholar]
  58. Mireille Alloue-Boraud W.A., Amighi K., N'Guessan F.K., Koffi-Nevry R., Destain J.. ( 2014;). Feasibility study of manufacturing coated tablet lipase from Yarrowia lipolytica. African Journal of Pharmacy and Pharmacology 8: 206–210 [CrossRef].
    [Google Scholar]
  59. Molinari F., Gandolfi R., Converti A., Zilli M.. ( 2000;). Mycelium-bound carboxylesterase from Aspergillus oryzae: an efficient catalyst for acetylation in organic solvent. Enzyme Microb Technol 27: 626–630 [CrossRef] [PubMed].
    [Google Scholar]
  60. Morin N., Cescut J., Beopoulos A., Lelandais G., Le Berre V., Uribelarrea J.L., Molina-Jouve C., Nicaud J.M.. ( 2011;). Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS One 6: e27966 [CrossRef] [PubMed].
    [Google Scholar]
  61. Müllner H., Daum G.. ( 2004;). Dynamics of neutral lipid storage in yeast. Acta Biochim Pol 51: 323–347 [PubMed].
    [Google Scholar]
  62. Müllner H., Deutsch G., Leitner E., Ingolic E., Daum G.. ( 2005;). YEH2/YLR020c encodes a novel steryl ester hydrolase of the yeast Saccharomyces cerevisiae. J Biol Chem 280: 13321–13328 [CrossRef] [PubMed].
    [Google Scholar]
  63. Mustranta A., Forssell P., Poutanen K.. ( 1993;). Applications of immobilized lipases to transesterification and esterification reactions in nonaqueous systems. Enzyme Microb Technol 15: 133–139 [CrossRef] [PubMed].
    [Google Scholar]
  64. Pang C.N., Gasteiger E., Wilkins M.R.. ( 2010;). Identification of arginine- and lysine-methylation in the proteome of Saccharomyces cerevisiae and its functional implications. BMC Genomics 11: 92 [CrossRef] [PubMed].
    [Google Scholar]
  65. Pignède G., Wang H., Fudalej F., Gaillardin C., Seman M., Nicaud J.M.. ( 2000;). Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J Bacteriol 182: 2802–2810 [CrossRef] [PubMed].
    [Google Scholar]
  66. Pruitt K.D., Tatusova T., Maglott D.R.. ( 2007;). NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35: D61–D65 [CrossRef] [PubMed].
    [Google Scholar]
  67. Punta M., Coggill P.C., Eberhardt R.Y., Mistry J., Tate J., Boursnell C., Pang N., Forslund K., Ceric G., other authors. ( 2012;). The Pfam protein families database. Nucleic Acids Res 40: (D1), D290–D301 [CrossRef] [PubMed].
    [Google Scholar]
  68. Rajakumari S., Daum G.. ( 2010;). Multiple functions as lipase, steryl ester hydrolase, phospholipase, and acyltransferase of Tgl4p from the yeast Saccharomyces cerevisiae. J Biol Chem 285: 15769–15776 [CrossRef] [PubMed].
    [Google Scholar]
  69. Rajan A., Sudha J.D., Abraham T.E.. ( 2008;). Enzymatic modification of cassava starch by fungal lipase. Ind Crops Prod 27: 50–59 [CrossRef].
    [Google Scholar]
  70. Ramani K., Chockalingam E., Sekaran G.. ( 2010;). Production of a novel extracellular acidic lipase from Pseudomonas gessardii using slaughterhouse waste as a substrate. J Ind Microbiol Biotechnol 37: 531–535 [CrossRef] [PubMed].
    [Google Scholar]
  71. Ratledge C.. ( 2004;). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86: 807–815 [CrossRef] [PubMed].
    [Google Scholar]
  72. Reynolds S.M., Käll L., Riffle M.E., Bilmes J.A., Noble W.S.. ( 2008;). Transmembrane topology and signal peptide prediction using dynamic bayesian networks. PLOS Comput Biol 4: e1000213 [CrossRef] [PubMed].
    [Google Scholar]
  73. Richmond G.S., Smith T.K.. ( 2011;). Phospholipases A1. Int J Mol Sci 12: 588–612 [CrossRef] [PubMed].
    [Google Scholar]
  74. Rismani-Yazdi H., Haznedaroglu B.Z., Hsin C., Peccia J.. ( 2012;). Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5: 74 [CrossRef] [PubMed].
    [Google Scholar]
  75. Saisubramanian N., Edwinoliver N.G., Nandakumar N., Kamini N.R., Puvanakrishnan R.. ( 2006;). Efficacy of lipase from Aspergillus niger as an additive in detergent formulations: a statistical approach. J Ind Microbiol Biotechnol 33: 669–676 [CrossRef] [PubMed].
    [Google Scholar]
  76. Sakuradani E.. ( 2010;). Advances in the production of various polyunsaturated fatty acids through Oleaginous Fungus Mortierella alpina breeding. Biosci Biotechnol Biochem 74: 908–917 [CrossRef] [PubMed].
    [Google Scholar]
  77. Sandoval G., Rivera I., Barrera-Rivera K.A., Martinez-Richa A.. ( 2010;). Biopolymer synthesis catalyzed by tailored lipases. Macromol Symp 289: 135–139 [CrossRef].
    [Google Scholar]
  78. Schmid R.D., Verger R.. ( 1998;). Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed Engl 37: 1608–1633 [CrossRef].
    [Google Scholar]
  79. Shen D.K., Noodeh A.D., Kazemi A., Grillot R., Robson G., Brugère J.F.. ( 2004;). Characterisation and expression of phospholipases B from the opportunistic fungus Aspergillus fumigatus. FEMS Microbiol Lett 239: 87–93 [CrossRef] [PubMed].
    [Google Scholar]
  80. Shi S.P., Qiu J.D., Sun X.Y., Suo S.B., Huang S.Y., Liang R.P.. ( 2012;). PMeS: prediction of methylation sites based on enhanced feature encoding scheme. PLoS One 7: e38772 [CrossRef] [PubMed].
    [Google Scholar]
  81. Singh A.K., Mukhopadhyay M.. ( 2012;). Overview of fungal lipase: a review. Appl Biochem Biotechnol 166: 486–520 [CrossRef] [PubMed].
    [Google Scholar]
  82. Stahmann K.P., Kupp C., Feldmann S.D., Sahm H.. ( 1994;). Formation and degradation of lipid bodies found in the riboflavin-producing fungus Ashbya gossypii. Appl Microbiol Biotechnol 42: 121–127 [CrossRef].
    [Google Scholar]
  83. Taniguchi I., Kuhlman W.A., Mayes A.M., Griffith L.G.. ( 2006;). Functional modification of biodegradable polyesters through a chemoselective approach: application to biomaterial surfaces. Polym Int 55: 1385–1397 [CrossRef].
    [Google Scholar]
  84. Taniyama Y., Shibata S., Kita S., Horikoshi K., Fuse H., Shirafuji H., Sumino Y., Fujino M.. ( 1999;). Cloning and expression of a novel lysophospholipase which structurally resembles lecithin cholesterol acyltransferase. Biochem Biophys Res Commun 257: 50–56 [CrossRef] [PubMed].
    [Google Scholar]
  85. Treichel H., de Oliveira D., Mazutti M.A., Di Luccio M., Oliveira J.V.. ( 2010;). A review on microbial lipases production. Food and Bioprocess Technology 3: 182–196 [CrossRef].
    [Google Scholar]
  86. Upton C., Buckley J.T.. ( 1995;). A new family of lipolytic enzymes?. Trends Biochem Sci 20: 178–179 [CrossRef] [PubMed].
    [Google Scholar]
  87. Vakhlu J., Kour A.. ( 2006;). Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotechnol 9: 69–85 [CrossRef].
    [Google Scholar]
  88. Van Heusden G.P., Nebohâcovâ M., Overbeeke T.L., Steensma H.Y.. ( 1998;). The Saccharomyces cerevisiae TGL2 gene encodes a protein with lipolytic activity and can complement an Escherichia coli diacylglycerol kinase disruptant. Yeast 14: 225–232 [CrossRef] [PubMed].
    [Google Scholar]
  89. van Zutphen T., Todde V., de Boer R., Kreim M., Hofbauer H.F., Wolinski H., Veenhuis M., van der Klei I.J., Kohlwein S.D.. ( 2014;). Lipid droplet autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell 25: 290–301 [CrossRef] [PubMed].
    [Google Scholar]
  90. Wagner A., Grillitsch K., Leitner E., Daum G.. ( 2009;). Mobilization of steryl esters from lipid particles of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1791: 118–124 [CrossRef] [PubMed].
    [Google Scholar]
  91. Watanabe I., Koishi R., Yao Y., Tsuji T., Serizawa N.. ( 1999;). Molecular cloning and expression of the gene encoding a phospholipase A1 from Aspergillus oryzae. Biosci Biotechnol Biochem 63: 820–826 [CrossRef] [PubMed].
    [Google Scholar]
  92. Wilson P.A., Gardner S.D., Lambie N.M., Commans S.A., Crowther D.J.. ( 2006;). Characterization of the human patatin-like phospholipase family. J Lipid Res 47: 1940–1949 [CrossRef] [PubMed].
    [Google Scholar]
  93. Wong H., Schotz M.C.. ( 2002;). The lipase gene family. J Lipid Res 43: 993–999 [CrossRef] [PubMed].
    [Google Scholar]
  94. Wu L., Ge G., Wan J.. ( 2009;). Biodegradation of oil wastewater by free and immobilized Yarrowia lipolytica W29. J Environ Sci (China) 21: 237–242 [CrossRef] [PubMed].
    [Google Scholar]
  95. Xia J., Chen X., Nnanna I.A.. ( 1996;). Activity and stability of Penicillium cyclopium lipase in surfactant and dtergent solutions. J Am Oil Chem Soc 73: 115–120 [CrossRef].
    [Google Scholar]
  96. Xu Y., Wang D., Mu X.Q., Zhao G.A., Zhang K.C.. ( 2002;). Biosynthesis of ethyl esters of short-chain fatty acids using whole-cell lipase from Rhizopus chinesis CCTCC M201021 in non-aqueous phase. J Mol Catal, B Enzym 18: 29–37 [CrossRef].
    [Google Scholar]
  97. Yan H.D., Zhang Q., Wang Z.. ( 2014;). Biocatalytic synthesis of short-chain flavor esters with high substrate loading by a whole-cell lipase from Aspergillus oryzae. Catal Commun 45: 59–62 [CrossRef].
    [Google Scholar]
  98. Yazawa H., Kumagai H., Uemura H.. ( 2012;). Characterization of triglyceride lipase genes of fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 96: 981–991 [CrossRef] [PubMed].
    [Google Scholar]
  99. Yu C.S., Chen Y.C., Lu C.H., Hwang J.K.. ( 2006;). Prediction of protein subcellular localization. Proteins 64: 643–651 [CrossRef] [PubMed].
    [Google Scholar]
  100. Zentler-Munro P.L., Assoufi B.A., Balasubramanian K., Cornell S., Benoliel D., Northfield T.C., Hodson M.E.. ( 1992;). Therapeutic potential and clinical efficacy of acid-resistant fungal lipase in the treatment of pancreatic steatorrhoea due to cystic fibrosis. Pancreas 7: 311–319 [CrossRef] [PubMed].
    [Google Scholar]
  101. Zhu M., Zhou P.P., Yu L.J.. ( 2002;). Extraction of lipids from Mortierella alpina and enrichment of arachidonic acid from the fungal lipids. Bioresour Technol 84: 93–95 [CrossRef] [PubMed].
    [Google Scholar]
  102. Zorn H., Bouws H., Takenberg M., Nimtz M., Getzlaff R., Breithaupt D.E., Berger R.G.. ( 2005;). An extracellular carboxylesterase from the basidiomycete Pleurotus sapidus hydrolyses xanthophyll esters. Biol Chem 386: 435–440 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000127
Loading
/content/journal/micro/10.1099/mic.0.000127
Loading

Data & Media loading...

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error