Mycobacteriophage-repressor-mediated immunity as a selectable genetic marker: Adephagia and BPs repressor selection Free

Abstract

Mycobacteriophages provide an abundance of systems for use in mycobacterial genetics, including manipulation of . Because of the dearth of antibiotic resistance cassettes and biosafety concerns in constructing recombinant virulent strains, we developed the use of mycobacteriophage-encoded repressor genes that can be selected in the presence of lytic versions of their cognate phages. The phage Adephagia repressor gene () was identified through its ability to confer immunity to Adephagia superinfection, together with the mapping of mutations in gene that confer a clear-phage phenotype. Plasmid transformants containing either Adephagia or the previously identified BPs repressor can be readily selected following electroporation using engineered lytic derivatives of Adephagia and BPs, respectively. Selection is as efficient as antibiotic selection, can be used with either single-copy integration vectors or with extrachromosomal vectors, and works similarly in both and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000120
2015-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/8/1539.html?itemId=/content/journal/micro/10.1099/mic.0.000120&mimeType=html&fmt=ahah

References

  1. Bardarov S., Kriakov J., Carriere C., Yu S., Vaamonde C., McAdam R.A., Bloom B.R., Hatfull G.F., Jacobs W.R. Jr 1997; Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 94:10961–10966 [View Article][PubMed]
    [Google Scholar]
  2. Bardarov S., Bardarov S. Jr, Pavelka M.S. Jr, Sambandamurthy V., Larsen M., Tufariello J., Chan J., Hatfull G., Jacobs W.R. Jr 2002; Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis M. bovis BCG and M. smegmatis . Microbiology 148:3007–3017[PubMed]
    [Google Scholar]
  3. Bowman B.U. 1969; Properties of mycobacteriophage DS6A. I. Immunogenicity in rabbits. Proc Soc Exp Biol Med 131:196–200 [View Article][PubMed]
    [Google Scholar]
  4. Broussard G.W., Hatfull G.F. 2013; Evolution of genetic switch complexity. Bacteriophage 3:e24186 [View Article][PubMed]
    [Google Scholar]
  5. Broussard G.W., Oldfield L.M., Villanueva V.M., Lunt B.L., Shine E.E., Hatfull G.F. 2013; Integration-dependent bacteriophage immunity provides insights into the evolution of genetic switches. Mol Cell 49:237–248 [View Article][PubMed]
    [Google Scholar]
  6. Brown K.L., Sarkis G.J., Wadsworth C., Hatfull G.F. 1997; Transcriptional silencing by the mycobacteriophage L5 repressor. EMBO J 16:5914–5921 [View Article][PubMed]
    [Google Scholar]
  7. Cresawn S.G., Bogel M., Day N., Jacobs-Sera D., Hendrix R.W., Hatfull G.F. 2011; Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinformatics 12:395 [View Article][PubMed]
    [Google Scholar]
  8. Dedrick R.M., Marinelli L.J., Newton G.L., Pogliano K., Pogliano J., Hatfull G.F. 2013; Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles. Mol Microbiol 88:577–589 [View Article][PubMed]
    [Google Scholar]
  9. Donnelly-Wu M.K., Jacobs W.R. Jr, Hatfull G.F. 1993; Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol Microbiol 7:407–417 [View Article][PubMed]
    [Google Scholar]
  10. Ford M.E., Sarkis G.J., Belanger A.E., Hendrix R.W., Hatfull G.F. 1998; Genome structure of mycobacteriophage D29: implications for phage evolution. J Mol Biol 279:143–164 [View Article][PubMed]
    [Google Scholar]
  11. Fullner K.J., Hatfull G.F. 1997; Mycobacteriophage L5 infection of Mycobacterium bovis BCG: implications for phage genetics in the slow-growing mycobacteria. Mol Microbiol 26:755–766 [View Article][PubMed]
    [Google Scholar]
  12. Hatfull G.F. 2012; The secret lives of mycobacteriophages. Adv Virus Res 82:179–288[PubMed] [CrossRef]
    [Google Scholar]
  13. Hatfull G.F. 2014; Mycobacteriophages: windows into tuberculosis. PLoS Pathog 10:e1003953 [View Article][PubMed]
    [Google Scholar]
  14. Hatfull G.F., Sarkis G.J. 1993; DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol Microbiol 7:395–405 [View Article][PubMed]
    [Google Scholar]
  15. Hatfull G.F., Pedulla M.L., Jacobs-Sera D., Cichon P.M., Foley A., Ford M.E., Gonda R.M., Houtz J.M., Hryckowian A.J., other authors. 2006; Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet 2:e92 [View Article][PubMed]
    [Google Scholar]
  16. Hatfull G.F., Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science Program, KwaZulu-Natal Research Institute for Tuberculosis and HIV Mycobacterial Genetics Course Students & Phage Hunters Integrating Research and Education Program. 2012; Complete genome sequences of 138 mycobacteriophages. J Virol 86:2382–2384 [View Article][PubMed]
    [Google Scholar]
  17. Hatfull G.F., Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) Program, KwaZulu-Natal Research Institute for Tuberculosis and HIV (K-RITH) Mycobacterial Genetics Course, University of California—Los Angeles Research Immersion Laboratory in Virology & Phage Hunters Integrating Research and Education (PHIRE) Program. 2013; Complete genome sequences of 63 mycobacteriophages. Genome Announc 1:e00847–e00813 [View Article][PubMed]
    [Google Scholar]
  18. Huff J., Czyz A., Landick R., Niederweis M. 2010; Taking phage integration to the next level as a genetic tool for mycobacteria. Gene 468:8–19 [View Article][PubMed]
    [Google Scholar]
  19. Jacobs W.R. Jr, Tuckman M., Bloom B.R. 1987; Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327:532–535 [View Article][PubMed]
    [Google Scholar]
  20. Jacobs W.R. Jr, Barletta R.G., Udani R., Chan J., Kalkut G., Sosne G., Kieser T., Sarkis G.J., Hatfull G.F., Bloom B.R. 1993; Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260:819–822 [View Article][PubMed]
    [Google Scholar]
  21. Jacobs-Sera D., Marinelli L.J., Bowman C., Broussard G.W., Guerrero Bustamante C., Boyle M.M., Petrova Z.O., Dedrick R.M., Pope W.H., other authors. 2012; On the nature of mycobacteriophage diversity and host preference. Virology 434:187–201 [View Article][PubMed]
    [Google Scholar]
  22. Jordan T.C., Burnett S.H., Carson S., Caruso S.M., Clase K., DeJong R.J., Dennehy J.J., Denver D.R., Dunbar D., other authors. 2014; A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. MBio 5:e01051–e01013 [View Article][PubMed]
    [Google Scholar]
  23. Lee M.H., Pascopella L., Jacobs W.R. Jr, Hatfull G.F. 1991; Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A 88:3111–3115 [View Article][PubMed]
    [Google Scholar]
  24. Marinelli L.J., Piuri M., Swigonová Z., Balachandran A., Oldfield L.M., van Kessel J.C., Hatfull G.F. 2008; BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS One 3:e3957 [View Article][PubMed]
    [Google Scholar]
  25. Morris P., Marinelli L.J., Jacobs-Sera D., Hendrix R.W., Hatfull G.F. 2008; Genomic characterization of mycobacteriophage Giles: evidence for phage acquisition of host DNA by illegitimate recombination. J Bacteriol 190:2172–2182 [View Article][PubMed]
    [Google Scholar]
  26. Pham T.T., Jacobs-Sera D., Pedulla M.L., Hendrix R.W., Hatfull G.F. 2007; Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. Microbiology 153:2711–2723 [View Article][PubMed]
    [Google Scholar]
  27. Piuri M., Jacobs W.R. Jr, Hatfull G.F. 2009; Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis . PLoS One 4:e4870 [View Article][PubMed]
    [Google Scholar]
  28. Pope W.H., Ferreira C.M., Jacobs-Sera D., Benjamin R.C., Davis A.J., DeJong R.J., Elgin S.C., Guilfoile F.R., Forsyth M.H., other authors. 2011a; Cluster K mycobacteriophages: insights into the evolutionary origins of mycobacteriophage TM4. PLoS One 6:e26750 [View Article][PubMed]
    [Google Scholar]
  29. Pope W.H., Jacobs-Sera D., Russell D.A., Peebles C.L., Al-Atrache Z., Alcoser T.A., Alexander L.M., Alfano M.B., Alford S.T., other authors. 2011b; Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution. PLoS One 6:e16329 [View Article][PubMed]
    [Google Scholar]
  30. Pope W.H., Bowman C.A., Russell D.A., Jacobs-Sera D., Asai D.J., Cresawn S.G., Jacobs W.R. Jr, Hendrix R.W., Lawrence J.G., other authors. 2015; Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife 4:e06416 [View Article][PubMed]
    [Google Scholar]
  31. Ptashne M. 1987 A Genetic Switch: Phage and Higher Organisms Oxford: Blackwell Scientific and Cell Press;
    [Google Scholar]
  32. Rybniker J., Kramme S., Small P.L. 2006; Host range of 14 mycobacteriophages in Mycobacterium ulcerans and seven other mycobacteria including Mycobacterium tuberculosis—application for identification and susceptibility testing. J Med Microbiol 55:37–42 [View Article][PubMed]
    [Google Scholar]
  33. Sampson T., Broussard G.W., Marinelli L.J., Jacobs-Sera D., Ray M., Ko C.C., Russell D., Hendrix R.W., Hatfull G.F. 2009; Mycobacteriophages BPs, Angel and Halo: comparative genomics reveals a novel class of ultra-small mobile genetic elements. Microbiology 155:2962–2977 [View Article][PubMed]
    [Google Scholar]
  34. Sarkis G.J., Hatfull G.F. 1998; Mycobacteriophages. Methods Mol Biol 101:145–173[PubMed]
    [Google Scholar]
  35. Snapper S.B., Lugosi L., Jekkel A., Melton R.E., Kieser T., Bloom B.R., Jacobs W.R. Jr 1988; Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci U S A 85:6987–6991 [View Article][PubMed]
    [Google Scholar]
  36. Söding J., Biegert A., Lupas A.N. 2005; The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33:W244–W248 [View Article][PubMed]
    [Google Scholar]
  37. van Kessel J.C., Hatfull G.F. 2007; Recombineering in Mycobacterium tuberculosis . Nat Methods 4:147–152 [View Article][PubMed]
    [Google Scholar]
  38. van Kessel J.C., Hatfull G.F. 2008a; Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol 67:1094–1107 [View Article][PubMed]
    [Google Scholar]
  39. van Kessel J.C., Hatfull G.F. 2008b; Mycobacterial recombineering. Methods Mol Biol 435:203–215[PubMed] [CrossRef]
    [Google Scholar]
  40. van Kessel J.C., Marinelli L.J., Hatfull G.F. 2008; Recombineering mycobacteria and their phages. Nat Rev Microbiol 6:851–857 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000120
Loading
/content/journal/micro/10.1099/mic.0.000120
Loading

Data & Media loading...

Most cited Most Cited RSS feed