Physiological, biomass elemental composition and proteomic analyses of ammonium-limited chemostat growth, and comparison with iron- and glucose-limited chemostat growth Free

Abstract

physiological, biomass elemental composition and proteome acclimations to ammonium-limited chemostat growth were measured at four levels of nutrient scarcity controlled via chemostat dilution rate. These data were compared with published iron- and glucose-limited growth data collected from the same strain and at the same dilution rates to quantify general and nutrient-specific responses. Severe nutrient scarcity resulted in an overflow metabolism with differing organic byproduct profiles based on limiting nutrient and dilution rate. Ammonium-limited cultures secreted up to 35  % of the metabolized glucose carbon as organic byproducts with acetate representing the largest fraction; in comparison, iron-limited cultures secreted up to 70  % of the metabolized glucose carbon as lactate, and glucose-limited cultures secreted up to 4  % of the metabolized glucose carbon as formate. Biomass elemental composition differed with nutrient limitation; biomass from ammonium-limited cultures had a lower nitrogen content than biomass from either iron- or glucose-limited cultures. Proteomic analysis of central metabolism enzymes revealed that ammonium- and iron-limited cultures had a lower abundance of key tricarboxylic acid (TCA) cycle enzymes and higher abundance of key glycolysis enzymes compared with glucose-limited cultures. The overall results are largely consistent with cellular economics concepts, including metabolic tradeoff theory where the limiting nutrient is invested into essential pathways such as glycolysis instead of higher ATP-yielding, but non-essential, pathways such as the TCA cycle. The data provide a detailed insight into ecologically competitive metabolic strategies selected by evolution, templates for controlling metabolism for bioprocesses and a comprehensive dataset for validating representations of metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000118
2015-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/8/1659.html?itemId=/content/journal/micro/10.1099/mic.0.000118&mimeType=html&fmt=ahah

References

  1. Abdul-Tehrani H., Hudson A.J., Chang Y.S., Timms A.R., Hawkins C., Williams J.M., Harrison P.M., Guest J.R., Andrews S.C. 1999; Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient. J Bacteriol 181:1415–1428[PubMed]
    [Google Scholar]
  2. Alexeeva S., de Kort B., Sawers G., Hellingwerf K.J., de Mattos M.J.T. 2000; Effects of limited aeration and of the ArcAB system on intermediary pyruvate catabolism in Escherichia coli . J Bacteriol 182:4934–4940 [View Article][PubMed]
    [Google Scholar]
  3. Bauer S., Ziv E. 1976; Dense growth of aerobic bacteria in a bench-scale fermentor. Biotechnol Bioeng 18:81–94 [View Article][PubMed]
    [Google Scholar]
  4. Becker A., Fritz-Wolf K., Kabsch W., Knappe J., Schultz S., Volker Wagner A.F. 1999; Structure and mechanism of the glycyl radical enzyme pyruvate formate-lyase. Nat Struct Biol 6:969–975 [View Article][PubMed]
    [Google Scholar]
  5. Bloom A.J., Chapin F.S., Mooney H.A. 1985; Resource limitation in plants – an economic analogy. Annu Rev Ecol Evol Syst 16:363–392 [View Article]
    [Google Scholar]
  6. Brauer M.J., Yuan J., Bennett B.D., Lu W., Kimball E., Botstein D., Rabinowitz J.D. 2006; Conservation of the metabolomic response to starvation across two divergent microbes. Proc Natl Acad Sci U S A 103:19302–19307 [View Article][PubMed]
    [Google Scholar]
  7. Bull A.T. 2010; The renaissance of continuous culture in the post-genomics age. J Ind Microbiol Biotechnol 37:993–1021 [View Article][PubMed]
    [Google Scholar]
  8. Carlson R.P. 2007; Metabolic systems cost-benefit analysis for interpreting network structure and regulation. Bioinformatics 23:1258–1264 [View Article][PubMed]
    [Google Scholar]
  9. Carlson R.P. 2009; Decomposition of complex microbial behaviors into resource-based stress responses. Bioinformatics 25:90–97 [View Article][PubMed]
    [Google Scholar]
  10. Carlson R., Srienc F. 2004; Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states. Biotechnol Bioeng 86:149–162 [View Article][PubMed]
    [Google Scholar]
  11. Carlson R.P., Taffs R.L. 2010; Molecular-level tradeoffs and metabolic adaptation to simultaneous stressors. Curr Opin Biotechnol 21:670–676 [View Article][PubMed]
    [Google Scholar]
  12. Castan A., Enfors S.O. 2002; Formate accumulation due to DNA release in aerobic cultivations of Escherichia coli . Biotechnol Bioeng 77:324–328 [View Article][PubMed]
    [Google Scholar]
  13. Chevalier F. 2010; Highlights on the capacities of “gel-based” proteomics. Proteome Sci 8:23 [View Article][PubMed]
    [Google Scholar]
  14. Chrzanowski T.H., Grover J.P. 2008; Element content of Pseudomonas fluorescens varies with growth rate and temperature: a replicated chemostat study addressing ecological stoichiometry. Limnol Oceanogr 53:1242–1251 [View Article]
    [Google Scholar]
  15. Clark D.P. 1989; The fermentation pathways of Escherichia coli . FEMS Microbiol Rev 5:223–234[PubMed]
    [Google Scholar]
  16. Cordier J.-L., Butsch B., Birou B., Stockar U. 1987; The relationship between elemental composition and heat of combustion of microbial biomass. Appl Microbiol Biotechnol 25:305–312 [CrossRef]
    [Google Scholar]
  17. Cotner J.B., Makino W., Biddanda B.A. 2006; Temperature affects stoichiometry and biochemical composition of Escherichia coli . Microb Ecol 52:26–33 [View Article][PubMed]
    [Google Scholar]
  18. De Maeseneire S.L., De Mey M., Vandedrinck S., Vandamme E.J. 2006; Metabolic characterisation of E. coli citrate synthase and phosphoenolpyruvate carboxylase mutants in aerobic cultures. Biotechnol Lett 28:1945–1953 [View Article][PubMed]
    [Google Scholar]
  19. Del Don C., Hanselmann K.W., Peduzzi R., Bachofen R. 1994; Biomass composition and methods for the determination of metabolic reserve polymers in phototrophic sulfur bacteria. Aquat Sci 56:1–15 [View Article]
    [Google Scholar]
  20. Dratz E.A., Grieco P. 2009; Novel optical labeling molecules in proteomics and other biological analyses. World Patent 2009/005871-A
    [Google Scholar]
  21. Egli T. 1991; On multiple-nutrient-limited growth of microorganisms, with special reference to dual limitation by carbon and nitrogen substrates. Antonie van Leeuwenhoek 60:225–234 [View Article][PubMed]
    [Google Scholar]
  22. Fischer E., Sauer U. 2003; A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli . J Biol Chem 278:46446–46451 [View Article][PubMed]
    [Google Scholar]
  23. Folsom J.P., Parker A.E., Carlson R.P. 2014; Physiological and proteomic analysis of Escherichia coli iron-limited chemostat growth. J Bacteriol 196:2748–2761 [View Article][PubMed]
    [Google Scholar]
  24. Heldal M., Norland S., Fagerbakke K., Thingstad F., Bratbak G. 1996; The elemental composition of bacteria: a signature of growth conditions?. Mar Pollut Bull 33:3–9 [View Article]
    [Google Scholar]
  25. Ho K.P., Payne W.J. 1979; Assimilation efficiency and energy contents of prototrophic bacteria. Biotechnol Bioeng 21:787–802 [View Article]
    [Google Scholar]
  26. Holme T., Westöö G., Svennerholm L., Magnéli A., Magnéli A., Pestmalis H., Åsbrink S. 1957; Continuous culture studies on glycogen synthesis in Escherichia coli B. Acta Chem Scand 11:763–775 [View Article]
    [Google Scholar]
  27. Hua Q., Yang C., Baba T., Mori H., Shimizu K. 2003; Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol 185:7053–7067 [View Article][PubMed]
    [Google Scholar]
  28. Hua Q., Yang C., Oshima T., Mori H., Shimizu K. 2004; Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Appl Environ Microbiol 70:2354–2366 [View Article][PubMed]
    [Google Scholar]
  29. Hudson A.J., Andrews S.C., Hawkins C., Williams J.M., Izuhara M., Meldrum F.C., Mann S., Harrison P.M., Guest J.R. 1993; Overproduction, purification and characterization of the Escherichia coli ferritin. Eur J Biochem 218:985–995 [View Article][PubMed]
    [Google Scholar]
  30. Ihssen J., Egli T. 2004; Specific growth rate and not cell density controls the general stress response in Escherichia coli . Microbiology 150:1637–1648 [View Article][PubMed]
    [Google Scholar]
  31. Keshavarz T., Roy I. 2010; Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321–326 [View Article][PubMed]
    [Google Scholar]
  32. Kussell E., Leibler S. 2005; Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–2078 [View Article][PubMed]
    [Google Scholar]
  33. Kussell E., Kishony R., Balaban N.Q., Leibler S. 2005; Bacterial persistence: a model of survival in changing environments. Genetics 169:1807–1814 [View Article][PubMed]
    [Google Scholar]
  34. Law R. 1979; Optimal life histories under age-specific predation. Am Nat 114:399–417 [View Article]
    [Google Scholar]
  35. Liu X., Ferenci T. 1998; Regulation of porin-mediated outer membrane permeability by nutrient limitation in Escherichia coli . J Bacteriol 180:3917–3922[PubMed]
    [Google Scholar]
  36. Miller T.E., Burns J.H., Munguia P., Walters E.L., Kneitel J.M., Richards P.M., Mouquet N., Buckley H.L. 2005; A critical review of twenty years’ use of the resource-ratio theory. Am Nat 165:439–448 [View Article][PubMed]
    [Google Scholar]
  37. Molenaar D., vanBerlo R., deRidder D., Teusink B. 2009; Shifts in growth strategies reflect tradeoffs in cellular economics. Mol Syst Biol 5:323 [View Article][PubMed]
    [Google Scholar]
  38. Monod J. 1950; [The continuous culture technique: theory and applications]. Ann Inst Pasteur (Paris) 79:390 (in French)
    [Google Scholar]
  39. Moreau P.L. 2007; The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids. J Bacteriol 189:2249–2261 [View Article][PubMed]
    [Google Scholar]
  40. Nanchen A., Schicker A., Sauer U. 2006; Nonlinear dependency of intracellular fluxes on growth rate in miniaturized continuous cultures of Escherichia coli . Appl Environ Microbiol 72:1164–1172 [View Article][PubMed]
    [Google Scholar]
  41. Natarajan A., Srienc F. 2000; Glucose uptake rates of single E. coli cells grown in glucose-limited chemostat cultures. J Microbiol Methods 42:87–96 [View Article][PubMed]
    [Google Scholar]
  42. Neijssel O.M., Teixeira de Mattos M.J., Tempest D.W. 1996; Growth yield and energy distribution. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp. 1683–1692 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  43. Novick A., Szilard L. 1950; Description of the chemostat. Science 112:715–716 [View Article][PubMed]
    [Google Scholar]
  44. Pickett A.M., Bazin M.J., Topiwala H.H. 1979; Growth and composition of Escherichia coli subjected to square-wave perturbations in nutrient supply: effect of varying frequencies. Biotechnol Bioeng 21:1043–1055 [View Article]
    [Google Scholar]
  45. Pirt S.J. 1975 Principles of Microbe Cultivation Oxford: Blackwell Scientific;
    [Google Scholar]
  46. Pirt S.J. 1982; Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch Microbiol 133:300–302 [View Article][PubMed]
    [Google Scholar]
  47. Roels J.A. 1980; Application of macroscopic principles to microbial metabolism. Biotechnol Bioeng 22:2457–2514 [View Article]
    [Google Scholar]
  48. Sauer U., Lasko D.R., Fiaux J., Hochuli M., Glaser R., Szyperski T., Wüthrich K., Bailey J.E. 1999; Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol 181:6679–6688[PubMed]
    [Google Scholar]
  49. Schliep M., Ryall B., Ferenci T. 2012; The identification of global patterns and unique signatures of proteins across 14 environments using outer membrane proteomics of bacteria. Mol Biosyst 8:3017–3027 [View Article][PubMed]
    [Google Scholar]
  50. Scott J.T., Cotner J.B., Lapara T.M. 2012; Variable stoichiometry and homeostatic regulation of bacterial biomass elemental composition. Front Microbiol 3:42 [View Article][PubMed]
    [Google Scholar]
  51. Searle P.L. 1984; The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen: a review. Analyst (Lond) 109:549–568 [View Article]
    [Google Scholar]
  52. Senior P.J. 1975; Regulation of nitrogen metabolism in Escherichia coli Klebsiella aerogenes: studies with the continuous-culture technique. J Bacteriol 123:407–418[PubMed]
    [Google Scholar]
  53. Shipman M., Lubick K., Fouchard D., Guram R., Grieco P., Jutila M., Dratz E.A. 2012; Proteomic and systems biology analysis of monocytes exposed to securinine, a GABAA receptor antagonist and immune adjuvant. PLoS One 7:e41278 [View Article][PubMed]
    [Google Scholar]
  54. Simonds S., Grover J.P., Chrzanowski T.H. 2010; Element content of Ochromonas danica: a replicated chemostat study controlling the growth rate and temperature. FEMS Microbiol Ecol 74:346–352 [View Article][PubMed]
    [Google Scholar]
  55. Sterner R.W., Elser J.J. 2002 Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere Princeton, NJ: Princeton University Press;
    [Google Scholar]
  56. Stieg S. 2005; 4500-NH3 F. Phenate method. In Standard Methods for the Examination of Water and Wastewater pp. 4–114 Edited by Eaton A. D., Clesceri L. S., Rice E. W., Greenberg A. E., Franson M. A. H. Washington, DC: American Public Health Association/American Water Works Association/Water Environment Federation;
    [Google Scholar]
  57. Sukmarini L., Shimizu K. 2010; Metabolic regulation of Escherichia coli and its glnG and zwf mutants under nitrogen limitation. Biochem Eng J 48:230–236 [View Article][PubMed]
    [Google Scholar]
  58. Tilman D. 1982 Resource Competition and Community Structure Princeton, NJ: Princeton University Press;
    [Google Scholar]
  59. Wagner A.F., Schultz S., Bomke J., Pils T., Lehmann W.D., Knappe J. 2001; YfiD of Escherichia coli and Y06I of bacteriophage tbl4 as autonomous glycyl radical cofactors reconstituting the catalytic center of oxygen-fragmented pyruvate formate-lyase. Biochem Biophys Res Commun 285:456–462 [View Article][PubMed]
    [Google Scholar]
  60. Wang C.C., Newton A. 1969; Iron transport in Escherichia coli: roles of energy-dependent uptake and 2,3-dihydroxybenzoylserine. J Bacteriol 98:1142–1150[PubMed]
    [Google Scholar]
  61. Zhu J., Shalel-Levanon S., Bennett G., San K.Y. 2007; The YfiD protein contributes to the pyruvate formate-lyase flux in an Escherichia coli arcA mutant strain. Biotechnol Bioeng 97:138–143 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000118
Loading
/content/journal/micro/10.1099/mic.0.000118
Loading

Data & Media loading...

Supplements

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Supplementary Data

EXCEL

Most cited Most Cited RSS feed