1887

Abstract

Analysis of the genome sequence of strain 6A8, an acidophilic methanogen isolated from an ombrotrophic (rain-fed) peat bog, has revealed unique features that likely allow it to survive in acidic, nutrient-poor conditions. First, is predicted to generate ATP using protons that are abundant in peat, rather than sodium ions that are scarce, and the sequence of a membrane-bound methyltransferase, believed to pump Na in all methanogens, shows differences in key amino acid residues. Further, perhaps reflecting the hypokalemic status of many peat bogs, demonstrates redundancy in the predicted potassium uptake genes , and , some of which may have been horizontally transferred to methanogens from bacteria, possibly spp. Overall, the putative functions of the potassium uptake, ATPase and methyltransferase genes may, at least in part, explain the cosmopolitan success of group E1/E2 and related methanogenic archaea in acidic peat bogs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000117
2015-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/8/1572.html?itemId=/content/journal/micro/10.1099/mic.0.000117&mimeType=html&fmt=ahah

References

  1. Altendorf K. , Epstein W. . ( 1996;). The Kdp-ATPase of Escherichia coli . . In Biomembranes: a Multi-Volume Treatise 5, pp. 403–420. Edited by Lee A. G. . Greenwich, CT: JAI Press;.[CrossRef]
    [Google Scholar]
  2. Ballal A. , Basu B. , Apte S.K. . ( 2007;). The Kdp-ATPase system and its regulation. J Biosci 32: 559–568 [CrossRef] [PubMed].
    [Google Scholar]
  3. Basiliko N. , Yavitt J.B. , Dees P.M. , Merkel S.M. . ( 2003;). Methane biogeochemistry and methanogen communities in two northern peatland ecosystems. New York State. Geomicrobiol J 20: 563–577 [CrossRef].
    [Google Scholar]
  4. Becher B. , Müller V. . ( 1994;). Delta mu Na+ drives the synthesis of ATP via an delta mu Na+-translocating F1F0-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1. J Bacteriol 176: 2543–2550 [PubMed].
    [Google Scholar]
  5. Bertrand J. , Altendorf K. , Bramkamp M. . ( 2004;). Amino acid substitutions in putative selectivity filter regions III and IV in KdpA alter ion selectivity of the KdpFABC complex from Escherichia coli . J Bacteriol 186: 5519–5522 [CrossRef] [PubMed].
    [Google Scholar]
  6. Blaut M. , Gottschalk G. . ( 1984;). Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri . Eur J Biochem 141: 217–222 [CrossRef] [PubMed].
    [Google Scholar]
  7. Bräuer S.L. , Yavitt J.B. , Zinder S.H. . ( 2004;). Methanogenesis in McLean Bog, an acidic peat bog in upstate New York: stimulation by H2/CO2 in the presence of rifampicin, or by low concentrations of acetate. Geomicrobiol J 21: 433–443 [CrossRef].
    [Google Scholar]
  8. Bräuer S.L. , Cadillo-Quiroz H. , Yashiro E. , Yavitt J.B. , Zinder S.H. . ( 2006a;). Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442: 192–194 [CrossRef] [PubMed].
    [Google Scholar]
  9. Bräuer S.L. , Yashiro E. , Ueno N.G. , Yavitt J.B. , Zinder S.H. . ( 2006b;). Characterization of acid-tolerant H2/CO2-utilizing methanogenic enrichment cultures from an acidic peat bog in New York State. FEMS Microbiol Ecol 57: 206–216 [CrossRef] [PubMed].
    [Google Scholar]
  10. Bräuer S.L. , Cadillo-Quiroz H. , Ward R.J. , Yavitt J.B. , Zinder S.H. . ( 2011;). Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int J Syst Evol Microbiol 61: 45–52 [CrossRef] [PubMed].
    [Google Scholar]
  11. Buurman E.T. , Kim K.-T. , Epstein W. . ( 1995;). Genetic evidence for two sequentially occupied K+ binding sites in the Kdp transport ATPase. J Biol Chem 270: 6678–6685 [CrossRef] [PubMed].
    [Google Scholar]
  12. Cadillo-Quiroz H. , Bräuer S. , Yashiro E. , Sun C. , Yavitt J. , Zinder S. . ( 2006;). Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environ Microbiol 8: 1428–1440 [CrossRef] [PubMed].
    [Google Scholar]
  13. Cadillo-Quiroz H. , Yashiro E. , Yavitt J.B. , Zinder S.H. . ( 2008;). Characterization of the archaeal community in a minerotrophic fen and terminal restriction fragment length polymorphism-directed isolation of a novel hydrogenotrophic methanogen. Appl Environ Microbiol 74: 2059–2068 [CrossRef] [PubMed].
    [Google Scholar]
  14. Cadillo-Quiroz H. , Yavitt J.B. , Zinder S.H. . ( 2009;). Methanosphaerula palustris gen. nov., sp. nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland. Int J Syst Evol Microbiol 59: 928–935 [CrossRef] [PubMed].
    [Google Scholar]
  15. Dettling M.D. , Yavitt J.B. , Cadillo-Quiroz H. , Sun C. , Zinder S.H. . ( 2007;). Soil–methanogen interactions in two peatlands (bog, fen) in Central New York State. Geomicrobiol J 24: 247–259 [CrossRef].
    [Google Scholar]
  16. Dorus S. , Mimura H. , Epstein W. . ( 2001;). Substrate-binding clusters of the K+-transporting Kdp ATPase of Escherichia coli investigated by amber suppression scanning mutagenesis. J Biol Chem 276: 9590–9598 [CrossRef] [PubMed].
    [Google Scholar]
  17. Dridi B. , Fardeau M.L. , Ollivier B. , Raoult D. , Drancourt M. . ( 2012;). Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62: 1902–1907 [PubMed].[CrossRef]
    [Google Scholar]
  18. Dybas M. , Konisky J. . ( 1992;). Energy transduction in the methanogen Methanococcus voltae is based on a sodium current. J Bacteriol 174: 5575–5583 [PubMed].
    [Google Scholar]
  19. Edwards C. , Hales B.A. , Hall G.H. , McDonald I.R. , Murrell J.C. , Pickup R. , Ritchie D.A. , Saunders J.R. , Simon B.M. , Upton M. . ( 1998;). Microbiological processes in the terrestrial carbon cycle: methane cycling in peat. Atmos Environ 32: 3247–3255 [CrossRef].
    [Google Scholar]
  20. Epstein W. . ( 2003;). The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75: 293–320 [PubMed].[CrossRef]
    [Google Scholar]
  21. Epstein W. , Walderhaug M.O. , Polarek J.W. , Hesse J.E. , Dorus E. , Daniel J.M. , Green N.M. , Broome-Smith J. . ( 1990;). The bacterial Kdp K+-ATPase and its relation to other transport ATPases, such as the Na+/K+- and Ca2+-ATPases in higher organisms. Philos Trans R Soc Lond B Biol Sci 326: 479–487 [CrossRef] [PubMed].
    [Google Scholar]
  22. Ewing B. , Green P. . ( 1998;). Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8: 186–194 [CrossRef] [PubMed].
    [Google Scholar]
  23. Ewing B. , Hillier L. , Wendl M.C. , Green P. . ( 1998;). Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8: 175–185 [CrossRef] [PubMed].
    [Google Scholar]
  24. Felsenstein J. . ( 2004;). phylip (phylogeny inference package) version 3.68. Distributed by the author Seattle, USA: Department of Genome Sciences, University of Washington;.
  25. Galand P.E. , Fritze H. , Conrad R. , Yrjälä K. . ( 2005;). Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems. Appl Environ Microbiol 71: 2195–2198 [CrossRef] [PubMed].
    [Google Scholar]
  26. Gaßel M. , Möllenkamp T. , Puppe W. , Altendorf K. . ( 1999;). The KdpF subunit is part of the K+-translocating Kdp complex of Escherichia coli and is responsible for stabilization of the complex in vitro . J Biol Chem 274: 37901–37907 [CrossRef] [PubMed].
    [Google Scholar]
  27. Godin A. , McLaughlin J.W. , Webster K.L. , Packalen M. , Basiliko N. . ( 2012;). Methane and methanogen community dynamics across a boreal peatland nutrient gradient. Soil Biol Biochem 48: 96–105 [CrossRef].
    [Google Scholar]
  28. Gordon D. , Abajian C. , Green P. . ( 1998;). Consed: a graphical tool for sequence finishing. Genome Res 8: 195–202 [CrossRef] [PubMed].
    [Google Scholar]
  29. Gottschalk G. , Thauer R.K. . ( 2001;). The Na+-translocating methyltransferase complex from methanogenic archaea. Biochim Biophys Acta 1505: 28–36 [CrossRef] [PubMed].
    [Google Scholar]
  30. Greie J.-C. . ( 2011;). The KdpFABC complex from Escherichia coli: a chimeric K+ transporter merging ion pumps with ion channels. Eur J Cell Biol 90: 705–710 [CrossRef] [PubMed].
    [Google Scholar]
  31. Grigoriev I.V. , Nordberg H. , Shabalov I. , Aerts A. , Cantor M. , Goodstein D. , Kuo A. , Minovitsky S. , Nikitin R. , other authors . ( 2012;). The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40: D26–D32 [PubMed].[CrossRef]
    [Google Scholar]
  32. Grüber G. , Manimekalai M.S. , Mayer F. , Müller V. . ( 2014;). ATP synthases from archaea: the beauty of a molecular motor. Biochim Biophys Acta 1837: 940–952 [CrossRef] [PubMed].
    [Google Scholar]
  33. Hales B.A. , Edwards C. , Ritchie D.A. , Hall G. , Pickup R.W. , Saunders J.R. . ( 1996;). Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62: 668–675 [PubMed].
    [Google Scholar]
  34. Hamberger A. , Horn M.A. , Dumont M.G. , Murrell J.C. , Drake H.L. . ( 2008;). Anaerobic consumers of monosaccharides in a moderately acidic fen. Appl Environ Microbiol 74: 3112–3120 [CrossRef] [PubMed].
    [Google Scholar]
  35. Han C.S. , Chain P. . ( 2006;). Finishing repeat regions automatically with Dupfinisher. . In Proceedings of the 2006 International Conference on Bioinformatics and Computational Biology, pp. 141–146. Edited by Arabnia H. R. , Valafar H. . CSREA Press;.
    [Google Scholar]
  36. Hawkins A.N. , Johnson K.W. , Bräuer S.L. . ( 2014;). Southern Appalachian peatlands support high archaeal diversity. Microb Ecol 67: 587–602 [CrossRef] [PubMed].
    [Google Scholar]
  37. Høj L. , Olsen R.A. , Torsvik V.L. . ( 2005;). Archaeal communities in High Arctic wetlands at Spitsbergen, Norway (78°N) as characterized by 16S rRNA gene fingerprinting. FEMS Microbiol Ecol 53: 89–101 [CrossRef] [PubMed].
    [Google Scholar]
  38. Hu G.-B. , Rice W.J. , Dröse S. , Altendorf K. , Stokes D.L. . ( 2008;). Three-dimensional structure of the KdpFABC complex of Escherichia coli by electron tomography of two-dimensional crystals. J Struct Biol 161: 411–418 [CrossRef] [PubMed].
    [Google Scholar]
  39. Inatomi K. , Kamagata Y. , Nakamura K. . ( 1993;). Membrane ATPase from the aceticlastic methanogen Methanothrix thermophila . J Bacteriol 175: 80–84 [PubMed].
    [Google Scholar]
  40. Jarrell K.F. , Kalmokoff M.L. . ( 1988;). Nutritional requirements of the methanogenic rchaebacteria. Can J Microbiol 34: 557–576 [CrossRef].
    [Google Scholar]
  41. Juottonen H. , Galand P.E. , Tuittila E.S. , Laine J. , Fritze H. , Yrjälä K. . ( 2005;). Methanogen communities and bacteria along an ecohydrological gradient in a northern raised bog complex. Environ Microbiol 7: 1547–1557 [CrossRef] [PubMed].
    [Google Scholar]
  42. Kotsyurbenko O.R. . ( 2010;). Soil, wetlands, peat. . In Handbook of Hydrocarbon and Lipid Microbiology, pp. 626–634. Edited by Timmis K. N. . Berlin: Springer-Verlag; [CrossRef].
    [Google Scholar]
  43. Kotsyurbenko O.R. , Friedrich M.W. , Simankova M.V. , Nozhevnikova A.N. , Golyshin P.N. , Timmis K.N. , Conrad R. . ( 2007;). Shift from acetoclastic to H2-dependent methanogenesis in a West Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl Environ Microbiol 73: 2344–2348 [CrossRef] [PubMed].
    [Google Scholar]
  44. Larkin M.A. , Blackshields G. , Brown N.P. , Chenna R. , McGettigan P.A. , McWilliam H. , Valentin F. , Wallace I.M. , Wilm A. , other authors . ( 2007;). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948 [CrossRef] [PubMed].
    [Google Scholar]
  45. Lin X. , Kennedy D. , Fredrickson J. , Bjornstad B. , Konopka A. . ( 2012;). Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environ Microbiol 14: 414–425 [CrossRef] [PubMed].
    [Google Scholar]
  46. Markowitz V.M. , Korzeniewski F. , Palaniappan K. , Szeto E. , Werner G. , Padki A. , Zhao X. , Dubchak I. , Hugenholtz P. , other authors . ( 2006;). The integrated microbial genomes (IMG) system. Nucleic Acids Res 34: D344–D348 [CrossRef] [PubMed].
    [Google Scholar]
  47. McMillan D.G.G. , Ferguson S.A. , Dey D. , Schröder K. , Aung H.L. , Carbone V. , Attwood G.T. , Ronimus R.S. , Meier T. , other authors . ( 2011;). A1A0-ATP synthase of Methanobrevibacter ruminantium couples sodium ions for ATP synthesis under physiological conditions. J Biol Chem 286: 39882–39892 [CrossRef] [PubMed].
    [Google Scholar]
  48. Morsomme P. , Chami M. , Marco S. , Nader J. , Ketchum K.A. , Goffeau A. , Rigaud J.-L. . ( 2002;). Characterization of a hyperthermophilic P-type ATPase from Methanococcus jannaschii expressed in yeast. J Biol Chem 277: 29608–29616 [CrossRef] [PubMed].
    [Google Scholar]
  49. Mulkidjanian A.Y. , Galperin M.Y. , Makarova K.S. , Wolf Y.I. , Koonin E.V. . ( 2008;). Evolutionary primacy of sodium bioenergetics. Biol Direct 3: 13 [CrossRef] [PubMed].
    [Google Scholar]
  50. Müller V. , Ruppert C. , Lemker T. . ( 1999;). Structure and function of the A1A0-ATPases from methanogenic Archaea. J Bioenerg Biomembr 31: 15–27 [CrossRef] [PubMed].
    [Google Scholar]
  51. Nakashima K. , Sugiura A. , Momoi H. , Mizuno T. . ( 1992;). Phosphotransfer signal transduction between two regulatory factors involved in the osmoregulated kdp operon in Escherichia coli . Mol Microbiol 6: 1777–1784 [CrossRef] [PubMed].
    [Google Scholar]
  52. Pisa K.Y. , Weidner C. , Maischak H. , Kavermann H. , Müller V. . ( 2007;). The coupling ion in the methanoarchaeal ATP synthases: H+ vs. Na+ in the A1A0 ATP synthase from the archaeon Methanosarcina mazei Gö1. FEMS Microbiol Lett 277: 56–63 [CrossRef] [PubMed].
    [Google Scholar]
  53. Podell S. , Gaasterland T. . ( 2007;). DarkHorse: a method for genome-wide prediction of horizontal gene transfer. Genome Biol 8: R16 [CrossRef] [PubMed].
    [Google Scholar]
  54. Poolman B. , Glaasker E. . ( 1998;). Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29: 397–407 [CrossRef] [PubMed].
    [Google Scholar]
  55. Rhoads D.B. , Waters F.B. , Epstein W. . ( 1976;). Cation transport in Escherichia coli. VIII. Potassium transport mutants. J Gen Physiol 67: 325–341 [CrossRef] [PubMed].
    [Google Scholar]
  56. Sakai S. , Takaki Y. , Shimamura S. , Sekine M. , Tajima T. , Kosugi H. , Ichikawa N. , Tasumi E. , Hiraki A.T. , other authors . ( 2011;). Genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales . PLoS One 6: e22898 [CrossRef] [PubMed].
    [Google Scholar]
  57. Sakai S. , Ehara M. , Tseng I.-C. , Yamaguchi T. , Bräuer S.L. , Cadillo-Quiroz H. , Zinder S.H. , Imachi H. . ( 2012;). Methanolinea mesophila sp. nov., a hydrogenotrophic methanogen isolated from rice field soil, and proposal of the archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales . Int J Syst Evol Microbiol 62: 1389–1395 [CrossRef] [PubMed].
    [Google Scholar]
  58. Schlegel K. , Müller V. . ( 2013;). Evolution of Na+ and H+ bioenergetics in methanogenic archaea. Biochem Soc Trans 41: 421–426 [CrossRef] [PubMed].
    [Google Scholar]
  59. Schlegel K. , Leone V. , Faraldo-Gómez J.D. , Müller V. . ( 2012;). Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation. Proc Natl Acad Sci U S A 109: 947–952 [CrossRef] [PubMed].
    [Google Scholar]
  60. Schönheit P. , Perski H.J. . ( 1983;). ATP synthesis driven by a potassium diffusion potential in Methanobacterium thermoautotrophicum is stimulated by sodium. FEMS Microbiol Lett 20: 263–267 [CrossRef].
    [Google Scholar]
  61. Schrader M. , Fendler K. , Bamberg E. , Gassel M. , Epstein W. , Altendorf K. , Dröse S. . ( 2000;). Replacement of glycine 232 by aspartic acid in the KdpA subunit broadens the ion specificity of the K+-translocating KdpFABC complex. Biophys J 79: 802–813 [CrossRef] [PubMed].
    [Google Scholar]
  62. Tatusov R.L. , Galperin M.Y. , Natale D.A. , Koonin E.V. . ( 2000;). The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28: 33–36 [CrossRef] [PubMed].
    [Google Scholar]
  63. Thauer R.K. , Kaster A.K. , Seedorf H. , Buckel W. , Hedderich R. . ( 2008;). Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6: 579–591 [CrossRef] [PubMed].
    [Google Scholar]
  64. van der Laan M. , Gassel M. , Altendorf K. . ( 2002;). Characterization of amino acid substitutions in KdpA, the K+-binding and -translocating subunit of the KdpFABC complex of Escherichia coli . J Bacteriol 184: 5491–5494 [CrossRef] [PubMed].
    [Google Scholar]
  65. Wheeler D.L. , Barrett T. , Benson D.A. , Bryant S.H. , Canese K. , Chetvernin V. , Church D.M. , DiCuccio M. , Edgar R. , other authors . ( 2007;). Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 35: D5–D12 [CrossRef] [PubMed].
    [Google Scholar]
  66. Wüst P.K. , Horn M.A. , Drake H.L. . ( 2009;). Trophic links between fermenters and methanogens in a moderately acidic fen soil. Environ Microbiol 11: 1395–1409 [CrossRef] [PubMed].
    [Google Scholar]
  67. Yavitt J.B. , Basiliko N. , Turetsky M.R. , Hay A.G. . ( 2006;). Methanogenesis and methanogen diversity in three peatland types of the discontinuous permafrost zone, boreal western continental Canada. Geomicrobiol J 23: 641–651 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000117
Loading
/content/journal/micro/10.1099/mic.0.000117
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error