1887

Abstract

are Gram-negative, obligate intracellular bacteria responsible for significant diseases in humans and economically important domestic animals. These pathogens undergo a unique biphasic developmental cycle transitioning between the environmentally stable elementary body (EB) and the replicative intracellular reticulate body (RB), a conversion that appears to require extensive regulation of protein synthesis and function. However, possess a limited number of canonical mechanisms of transcriptional regulation. Ser/Thr/Tyr phosphorylation of proteins in bacteria has been increasingly recognized as an important mechanism of post-translational control of protein function. We utilized 2D gel electrophoresis coupled with phosphoprotein staining and MALDI-TOF/TOF analysis to map the phosphoproteome of the EB and RB forms of Forty-two non-redundant phosphorylated proteins were identified (some proteins were present in multiple locations within the gels). Thirty-four phosphorylated proteins were identified in EBs, including proteins found in central metabolism and protein synthesis, -specific hypothetical proteins and virulence-related proteins. Eleven phosphorylated proteins were identified in RBs, mostly involved in protein synthesis and folding and a single virulence-related protein. Only three phosphoproteins were found in both EB and RB phosphoproteomes. Collectively, 41 of 42 phosphoproteins were present across species, consistent with the existence of a conserved chlamydial phosphoproteome. The abundance of stage-specific phosphoproteins suggests that protein phosphorylation may play a role in regulating the function of developmental-stage-specific proteins and/or may function in concert with other factors in directing EB–RB transitions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000116
2015-08-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/8/1648.html?itemId=/content/journal/micro/10.1099/mic.0.000116&mimeType=html&fmt=ahah

References

  1. AbdelRahman Y.M. , Belland R.J. . ( 2005;). The chlamydial developmental cycle. FEMS Microbiol Rev 29: 949–959 [CrossRef] [PubMed].
    [Google Scholar]
  2. Archambaud C. , Gouin E. , Pizarro-Cerda J. , Cossart P. , Dussurget O. . ( 2005;). Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes . Mol Microbiol 56: 383–396 [CrossRef] [PubMed].
    [Google Scholar]
  3. Attwood P.V. , Piggott M.J. , Zu X.L. , Besant P.G. . ( 2007;). Focus on phosphohistidine. Amino Acids 32: 145–156 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bastidas R.J. , Elwell C.A. , Engel J.N. , Valdivia R.H. . ( 2013;). Chlamydial intracellular survival strategies. Cold Spring Harb Perspect Med 3: a010256 [CrossRef] [PubMed].
    [Google Scholar]
  5. Belland R.J. , Zhong G. , Crane D.D. , Hogan D. , Sturdevant D. , Sharma J. , Beatty W.L. , Caldwell H.D. . ( 2003;). Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis . Proc Natl Acad Sci U S A 100: 8478–8483 [CrossRef] [PubMed].
    [Google Scholar]
  6. Binet R. , Bowlin A.K. , Maurelli A.T. , Rank R.G. . ( 2010;). Impact of azithromycin resistance mutations on the virulence and fitness of Chlamydia caviae in guinea pigs. Antimicrob Agents Chemother 54: 1094–1101 [CrossRef] [PubMed].
    [Google Scholar]
  7. Clifton D.R. , Fields K.A. , Grieshaber S.S. , Dooley C.A. , Fischer E.R. , Mead D.J. , Carabeo R.A. , Hackstadt T. . ( 2004;). A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci U S A 101: 10166–10171 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dautry-Varsat A. , Subtil A. , Hackstadt T. . ( 2005;). Recent insights into the mechanisms of Chlamydia entry. Cell Microbiol 7: 1714–1722 [PubMed].
    [Google Scholar]
  9. Dworkin J. . ( 2015;). Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr Opin Microbiol 24: 47–52 [CrossRef] [PubMed].
    [Google Scholar]
  10. Fiuza M. , Canova M.J. , Patin D. , Letek M. , Zanella-Cléon I. , Becchi M. , Mateos L.M. , Mengin-Lecreulx D. , Molle V. , Gil J.A. . ( 2008;). The MurC ligase essential for peptidoglycan biosynthesis is regulated by the serine/threonine protein kinase PknA in Corynebacterium glutamicum . J Biol Chem 283: 36553–36563 [CrossRef] [PubMed].
    [Google Scholar]
  11. Gnad F. , Forner F. , Zielinska D.F. , Birney E. , Gunawardena J. , Mann M. . ( 2010;). Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria. Mol Cell Proteomics 9: 2642–2653 [CrossRef] [PubMed].
    [Google Scholar]
  12. Hatch T.P. , Allan I. , Pearce J.H. . ( 1984;). Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp. J Bacteriol 157: 13–20 [PubMed].
    [Google Scholar]
  13. Horn M. . ( 2008;). Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol 62: 113–131 [CrossRef] [PubMed].
    [Google Scholar]
  14. Horn M. , Collingro A. , Schmitz-Esser S. , Beier C.L. , Purkhold U. , Fartmann B. , Brandt P. , Nyakatura G.J. , Droege M. , other authors . ( 2004;). Illuminating the evolutionary history of chlamydiae. Science 304: 728–730.[CrossRef]
    [Google Scholar]
  15. Hua L. , Hefty P.S. , Lee Y.J. , Lee Y.M. , Stephens R.S. , Price C.W. . ( 2006;). Core of the partner switching signalling mechanism is conserved in the obligate intracellular pathogen Chlamydia trachomatis . Mol Microbiol 59: 623–636 [CrossRef] [PubMed].
    [Google Scholar]
  16. Jers C. , Pedersen M.M. , Paspaliari D.K. , Schütz W. , Johnsson C. , Soufi B. , Macek B. , Jensen P.R. , Mijakovic I. . ( 2010;). Bacillus subtilis BY-kinase PtkA controls enzyme activity and localization of its protein substrates. Mol Microbiol 77: 287–299 [CrossRef] [PubMed].
    [Google Scholar]
  17. Johnson D.L. , Mahony J.B. . ( 2007;). Chlamydophila pneumoniae PknD exhibits dual amino acid specificity and phosphorylates Cpn0712, a putative type III secretion YscD homolog. J Bacteriol 189: 7549–7555 [CrossRef] [PubMed].
    [Google Scholar]
  18. Johnson D.L. , Stone C.B. , Bulir D.C. , Coombes B.K. , Mahony J.B. . ( 2009;). A novel inhibitor of Chlamydophila pneumoniae protein kinase D (PknD) inhibits phosphorylation of CdsD and suppresses bacterial replication. BMC Microbiol 9: 218 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kalman S. , Mitchell W. , Marathe R. , Lammel C. , Fan J. , Hyman R.W. , Olinger L. , Grimwood J. , Davis R.W. , Stephens R.S. . ( 1999;). Comparative genomes of Chlamydia pneumoniae C. trachomatis . Nat Genet 21: 385–389 [CrossRef] [PubMed].
    [Google Scholar]
  20. Koo I.C. , Stephens R.S. . ( 2003;). A developmentally regulated two-component signal transduction system in Chlamydia . J Biol Chem 278: 17314–17319 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kumar C.M. , Khare G. , Srikanth C.V. , Tyagi A.K. , Sardesai A.A. , Mande S.C. . ( 2009;). Facilitated oligomerization of mycobacterial GroEL: evidence for phosphorylation-mediated oligomerization. J Bacteriol 191: 6525–6538 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lundemose A.G. , Birkelund S. , Larsen P.M. , Fey S.J. , Christiansen G. . ( 1990;). Characterization and identification of early proteins in Chlamydia trachomatis serovar L2 by two-dimensional gel electrophoresis. Infect Immun 58: 2478–2486 [PubMed].
    [Google Scholar]
  23. Matsumoto A. , Izutsu H. , Miyashita N. , Ohuchi M. . ( 1998;). Plaque formation by and plaque cloning of Chlamydia trachomatis biovar trachoma. J Clin Microbiol 36: 3013–3019 [PubMed].
    [Google Scholar]
  24. Mäurer A.P. , Mehlitz A. , Mollenkopf H.J. , Meyer T.F. . ( 2007;). Gene expression profiles of Chlamydophila pneumoniae during the developmental cycle and iron depletion-mediated persistence. PLoS Pathog 3: e83 [CrossRef] [PubMed].
    [Google Scholar]
  25. Mijakovic I. , Macek B. . ( 2012;). Impact of phosphoproteomics on studies of bacterial physiology. FEMS Microbiol Rev 36: 877–892 [CrossRef] [PubMed].
    [Google Scholar]
  26. Mukhopadhyay S. , Miller R.D. , Summersgill J.T. . ( 2004;). Analysis of altered protein expression patterns of Chlamydia pneumoniae by an integrated proteome-works system. J Proteome Res 3: 878–883 [CrossRef] [PubMed].
    [Google Scholar]
  27. Mukhopadhyay S. , Miller R.D. , Sullivan E.D. , Theodoropoulos C. , Mathews S.A. , Timms P. , Summersgill J.T. . ( 2006a;). Protein expression profiles of Chlamydia pneumoniae in models of persistence versus those of heat shock stress response. Infect Immun 74: 3853–3863 [CrossRef] [PubMed].
    [Google Scholar]
  28. Mukhopadhyay S. , Good D. , Miller R.D. , Graham J.E. , Mathews S.A. , Timms P. , Summersgill J.T. . ( 2006b;). Identification of Chlamydia pneumoniae proteins in the transition from reticulate to elementary body formation. Mol Cell Proteomics 5: 2311–2318 [CrossRef] [PubMed].
    [Google Scholar]
  29. Nicholson T.L. , Olinger L. , Chong K. , Schoolnik G. , Stephens R.S. . ( 2003;). Global stage-specific gene regulation during the developmental cycle of Chlamydia trachomatis . J Bacteriol 185: 3179–3189 [CrossRef] [PubMed].
    [Google Scholar]
  30. Olsen J.V. , Vermeulen M. , Santamaria A. , Kumar C. , Miller M.L. , Jensen L.J. , Gnad F. , Cox J. , Jensen T.S. , other authors . ( 2010;). Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3: ra3 [PubMed].[CrossRef]
    [Google Scholar]
  31. Parikh A. , Verma S.K. , Khan S. , Prakash B. , Nandicoori V.K. . ( 2009;). PknB-mediated phosphorylation of a novel substrate, N-acetylglucosamine-1-phosphate uridyltransferase, modulates its acetyltransferase activity. J Mol Biol 386: 451–464 [CrossRef] [PubMed].
    [Google Scholar]
  32. Peters J. , Wilson D.P. , Myers G. , Timms P. , Bavoil P.M. . ( 2007;). Type III secretion à la Chlamydia . Trends Microbiol 15: 241–251 [CrossRef] [PubMed].
    [Google Scholar]
  33. Rank R.G. , Hough A.J., Jr , Jacobs R.F. , Cohen C. , Barron A.L. . ( 1985;). Chlamydial pneumonitis induced in newborn guinea pigs. Infect Immun 48: 153–158 [PubMed].
    [Google Scholar]
  34. Rank R.G. , Sanders M.M. , Patton D.L. . ( 1995;). Increased incidence of oviduct pathology in the guinea pig after repeat vaginal inoculation with the chlamydial agent of guinea pig inclusion conjunctivitis. Sex Transm Dis 22: 48–54 [CrossRef] [PubMed].
    [Google Scholar]
  35. Rank R.G. , Bowlin A.K. , Reed R.L. , Darville T. . ( 2003;). Characterization of chlamydial genital infection resulting from sexual transmission from male to female guinea pigs and determination of infectious dose. Infect Immun 71: 6148–6154 [CrossRef] [PubMed].
    [Google Scholar]
  36. Read T.D. , Myers G.S. , Brunham R.C. , Nelson W.C. , Paulsen I.T. , Heidelberg J. , Holtzapple E. , Khouri H. , Federova N.B. , other authors . ( 2003;). Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae . Nucleic Acids Res 31: 2134–2147 [CrossRef] [PubMed].
    [Google Scholar]
  37. Rockey D.D. , Grosenbach D. , Hruby D.E. , Peacock M.G. , Heinzen R.A. , Hackstadt T. . ( 1997;). Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion. Mol Microbiol 24: 217–228 [CrossRef] [PubMed].
    [Google Scholar]
  38. Saka H.A. , Thompson J.W. , Chen Y.S. , Kumar Y. , Dubois L.G. , Moseley M.A. , Valdivia R.H. . ( 2011;). Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol Microbiol 82: 1185–1203 [CrossRef] [PubMed].
    [Google Scholar]
  39. Shaw A.C. , Christiansen G. , Birkelund S. . ( 1999;). Effects of interferon gamma on Chlamydia trachomatis serovar A and L2 protein expression investigated by two-dimensional gel electrophoresis. Electrophoresis 20: 775–780 [CrossRef] [PubMed].
    [Google Scholar]
  40. Shaw A.C. , Gevaert K. , Demol H. , Hoorelbeke B. , Vandekerckhove J. , Larsen M.R. , Roepstorff P. , Holm A. , Christiansen G. , Birkelund S. . ( 2002;). Comparative proteome analysis of Chlamydia trachomatis serovar A, D and L2. Proteomics 2: 164–186 [CrossRef] [PubMed].
    [Google Scholar]
  41. Skipp P. , Robinson J. , O'Connor C.D. , Clarke I.N. . ( 2005;). Shotgun proteomic analysis of Chlamydia trachomatis . Proteomics 5: 1558–1573 [CrossRef] [PubMed].
    [Google Scholar]
  42. Stülke J. . ( 2010;). More than just activity control: phosphorylation may control all aspects of a protein's properties. Mol Microbiol 77: 273–275 [CrossRef] [PubMed].
    [Google Scholar]
  43. Vandahl B.B. , Birkelund S. , Demol H. , Hoorelbeke B. , Christiansen G. , Vandekerckhove J. , Gevaert K. . ( 2001;). Proteome analysis of the Chlamydia pneumoniae elementary body. Electrophoresis 22: 1204–1223 [CrossRef] [PubMed].
    [Google Scholar]
  44. Vandahl B.B. , Birkelund S. , Christiansen G. . ( 2002;). Proteome analysis of Chlamydia pneumoniae . Methods Enzymol 358: 277–288 [PubMed].[CrossRef]
    [Google Scholar]
  45. Verma A. , Maurelli A.T. . ( 2003;). Identification of two eukaryote-like serine/threonine kinases encoded by Chlamydia trachomatis serovar L2 and characterization of interacting partners of Pkn1. Infect Immun 71: 5772–5784 [CrossRef] [PubMed].
    [Google Scholar]
  46. Zhao X. , León I.R. , Bak S. , Mogensen M. , Wrzesinski K. , Højlund K. , Jensen O.N. . ( 2011;). Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol Cell Proteomics 10: M110000299 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000116
Loading
/content/journal/micro/10.1099/mic.0.000116
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error